Принцип работы фреоновой холодильной установки
Принцип работы холодильной машины
На сегодняшний день наш быт мы не можем представить без приборов, которые охлаждают продукты. Даже на производстве реализовать технологический процесс невозможно без холодильных машин. Так, получается, что холодильные установки необходимы нам повседневной жизни, включая производство и торговлю.
Использовать естественное охлаждение не всегда можно, учитывая сезонность, и возможность снизить температуру максимум до температуры воздуха, а летом это и вовсе не реально. И здесь начинается наша необходимость в приобретении холодильника. Принцип работы холодильной машины основан на том, чтобы при помощи техники реализовать процесс испарения и выработать конденсат.
Среди преимуществ холодильных установок можно выделить автоматическую работу поддержания постоянной низкой температуры, которая будет оптимальной для конкретной категории продуктов. Но это касается фактической пользы, а если брать во внимание и затраты на эксплуатацию, ремонт и техническое обслуживание, то холодильник и вовсе получается выгодной техникой.
Принцип работы холодильной установки
Принцип работы холодильной машины основан на охлаждении – физическом процессе, базирующимся на потреблении выделяемого машиной тепла в результате кипения жидкости. С каким показателем температуры жидкая среда доходит до кипения – будет зависеть от происхождения жидкости и уровня оказываемого давления.
Высокий показатель давления – высокая температура кипения. Ровно в такой же зависимости работает этот процесс и обратно: ниже давление – меньше температура закипания и испарения жидкости.
Химические свойства каждого вида жидкости качественно влияют на температуру, необходимую для закипания. Так, например, вода, закипает при 100 градусах, а жидкому азоту необходимо -174 градуса по Цельсию.
Рассмотрим жидкий фреон. Этот хладагент является самым популярным веществом, которым насыщена вся система холодильного оборудования. Кстати, фреон в обычных условиях в открытой емкости может закипеть даже при нормальном показателе атмосферного давления. Причем, этот процесс начнется немедленно, как только фреон сконтактирует с воздухом.
Данное явление непременно сопровождается поглощением окружающего тепла. Вы сможете наблюдать, как сосуд будет покрываться инеем, потому что происходит конденсация и замораживание водных паров воздуха. Это действие завершится только тогда, когда хладагент примет газообразное состояние, или не увеличится давление над фреоном, чтобы прекратить испарение и остановить превращение жидкого фреона в газообразный.
Закипающий в испарителе хладагент переходит в активную фазу поглощения тепла, исходящего от шланг узла-теплообменника. А трубки, а точнее их материал, будут омываться жидкостью, а это напрямую связано с процессом охлаждения воздуха. Такой процесс не должен прерываться, он постоянный. Для его поддержания необходимо регулярное кипение фреона в испарителе, а значит – постоянное удаление газообразного хладагента и добавление его в жидком состоянии.
Конденсация пара жидкого фреона требует температуру ровно такую, какой она будет в зависимости от атмосферного давления. Выше показатель давления – выше градус для конденсации. Давление в 23 атмосферы необходимо, что конденсировать пары фреона R22, в то время как температура будет равна +55 градусам.
Пары хладагента во время превращения их в жидкость выделяют большое количество тепла в окружающую среду. Холодильник для такого процесса имеет специальный, абсолютно герметичный тепловой обменник, называемым конденсатором. Он предназначен для отвода выделенной тепловой энергии. Выглядит конденсатор как алюминиевый элемент, имеющий ребристую поверхность.
Чтобы пары фреона вывести из испарителя, а давление создать такое, которое будет оптимально благоприятным для конденсации, необходимо специальное насосное устройство – компрессор. Кроме того, в холодильной установке не обойтись без работы регулятора потока фреона. Эта функция отведена дросселирующей капиллярной трубке. Каждый из элементов холодильной системы соединяется между собой трубопроводом, образуя последовательную цепочку – так круг системы замыкается.
Принцип работы холодильной установки на фреоне
Принцип работы холодильной установки на фреоне предполагает выполнение реального цикла, который существенно отличается от теоретического. Разница заключается в присутствии такого понятия, как потеря давления. Происходит это во время реального цикла на клапанах компрессора (подробнее о видах компрессора читайте здесь: https://megaholod.ru/articles/kakie_byvayut_kompressory_v_kholodilnikakh/) и на его обвязке в частности. Такие потери в последствии необходимо компенсировать.
Для этого следует добиться увеличения работы сжатия, что понизит результативность цикла. В суть этого параметра вложены соотношение мощности агрегата и мощности, необходимой для работы компрессора. А вот насколько эффективно работает установка – параметр сравнительный, который никак не отражается на производительности холодильника.
Устройство и принцип работы холодильной установки
Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.
На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.
Как работает холодильная машина
Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.
Это оборудование включает в себя четыре узла:
- компрессор
- конденсатор
- терморегулирующий вентиль
- испаритель
Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах. Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения. Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.
При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта. Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.
Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.
После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.
На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:
- «И» — испаритель
- «К» -компрессор
- «КС» — конденсатор
- «Д» — дроссельный вентиль
Стрелочками указано направление технологического процесса.
Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.
В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.
Теоретический и реальный цикл холодильной установки
На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.
Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.
Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.
Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети. Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода. Чем больше этот показатель, тем выше эффективность установки.
Принцип работы фреоновых систем охлаждения
Дання статья является переводом, ананлогичной статьи с сайта phase-change.com
Данная статья написана Bowman, и опубликованна с его разрешения. Вот линк на оригинал: Beginner’s class 101 by BOWMAN
Хладогены — 134a, r12, r22, r502, r290 и другие. В принципе, любой газ, который переходит в жидкое состояние под давлением и .
Дання статья является переводом, ананлогичной статьи с сайта phase-change.com
Данная статья написана Bowman, и опубликованна с его разрешения. Вот линк на оригинал: Beginner’s class 101 by BOWMAN
Хладогены — 134a, r12, r22, r502, r290 и другие. В принципе, любой газ, который переходит в жидкое состояние под давлением и при кипении, испаряясь, забирает тепло, может подойти для наших целей. Единственное различие между всеми хладогенами это температура кипения.
Компрессор – в самом названии кроется его предназначение. Сжимает хладоген, превращая его в газ высокого давления. Это позволяет хладогену легко конденсироваться в жидкость.
Конденсер (радиатор) – охлаждается воздухом или жидкостью. Он охлаждает хладоген, который под давлением поступает в радиатор, конденсируясь в жидкость.
Испаритель – ну конечно же испаряет. Это место где хладоген в жидком состоянии, испаряясь переходит в газ. Этот процесс сопровождается поглощением тепла. На рисунке показан обычный испаритель, используемый в системах охлаждения (кондиционеры).
Осушитель/Фильтр – используется для удержания влаги и предотвращает ее взаимодействие с хладогеном. При взаимодействии хладогена и влаги возможно появление вредных кислот. Также осушитель содержит фильтр, который удерживает мелкие частички (пылинки) от попадания в капиллярную трубку или расширительный клапан. Это нужно для предотвращения засорения капиллярной трубки. На картинке изображен осушитель с фильтром (справа) и без него (слева)
Расширительный клапан (капиллярная трубка) – место, где хладоген находящийся под
давлением перетекает в область пониженного давления. В последствии хладоген начинает кипеть и испаряться. Расширительный клапан это механическое устройство, которое открывается и закрывается, регулируя поступление хладогена. Также можно использовать капиллярную трубку (0.026″ диаметром). Изменяя диаметр капилляра или его длину можно регулировать поступление фреона.
Хладоген двигается по кругу через всю систему. Хладоген начинает свой путь в компрессоре, где он сжимается и превращается в газ высокого давления. Газ движется далее к кондесеру, где благодаря высокому давлению и соответствующему охлаждению переходит в жидкость. Там же хладоген собирается в нижней части конденсера в виде стекающей жидкости. Далее жидкость движется к фильтру/осушителю. Жидкость проталкивается через фильтр, а меленькие частицы остаются внутри. Это предохраняет капиллярную трубку или расширительный клапан от закупоривания или поломки. Также осушитель защищает систему от попадания влаги в испаритель. Влага может прореагировать с газообразным хладогеном, образуя соединения, которые могут повредить систему. Попадание влаги в компрессор может вывести его из строя. Итак, хладоген в жидком состоянии находится в капиллярной трубке или расширительном клапане. Прежде чем двигаться дальше следует рассмотреть этот участок подробнее.
Проталкивание хладогена через капиллярную трубку или расширительный клапан дает нам три вещи:
1-я – это то, что данный участок разделяет систему на область высокого и низкого давления. Разделение потока хладогена позволяет компрессору поддерживать давление по одну сторону от капиллярной трубки или расширительного клапана. Это также дает нам область низкого давления, которая нужна для нормального кипения хладогена. Чем ниже давление в этой области, тем ниже точка кипения хладогена. Это дает нам низкую температуру испарителя.
2-я – это то, что мы можем контролировать поступление хладогена в испаритель. Поддержание соответствующего объема поступающего хладогена очень важно. Слишком много хладогена в испарителе может заполнить его. Это вызовет повышение давления в испарителе (большее количество кипящего хладогена, которое может вместить испаритель, приводит к повышению давления). При повышении давления повышается точка кипения хладогена, тем самым увеличивается температура испарителя. К тому же происходит неэффективное использование хладогена.
В другом случае, недостаточное количество хладогена приведет к неполному съему тепла в испарителе. В этом случае выделяющегося тепла будет больше чем поглощающегося и эффекта от охлаждения не будет.
3-я – это то, что если жидкого хладогена будет слишком много в испарителе, испаритель переполнится избыточной жидкостью и она попадет в компрессор. Это ОЧЕНЬ, ОЧЕНЬ плохо. Компрессор спроектирован для сжатия газа, а не жидкости! Этим мы просто испортим компрессор.
Существуют два способа регулировки количества хладогена поступающего в испаритель. Капиллярная трубка – первый из них. Она представляет собой очень тонкую трубку. Внутренний диаметр приблизительно 0.026″. Путем удлинения или укорачивания капилляра, а также подбором внутреннего диаметра можно регулировать поступление хладогена в испаритель.
Теперь поговорим о расширительном клапане. Клапан имеет входной и выходной штуцер, но также имеет расширяющийся температурный датчик, который устанавливается в конце испарителя. Следовательно при повышении или понижении температуры, датчик изменяет давление внутри себя и тем самым регулирует небольшой плунжер внутри расширительного клапана. Таким образом больше или меньше хладогена, в зависимости от положения плунжера, поступает в испаритель. Некоторые расширительные клапаны имеют линию выравнивания, которая при выключении системы выравнивают давление между зоной высокого и низкого давлния. Это позволяет более легкое включение компрессора после простоя. Здесь рассмотрены только пара видов расширительных клапанов, но их разновидностей еще больше.
Испаритель расположен в конце капиллярной трубки или расширительного клапана, в области низкого давления. Под этим низким давлением хладоген может свободно кипеть. И как было сказано в самом начале, основным различием хладогенов является температура их кипения. Теперь испаритель является местом в котором жидкий хладоген кипит. Существуют множество различных конструкций испарителей. Как раз испаритель – это то место которое, различается в промышленных системах охлаждения и в компьютерных системах охлаждения.
Обычной испаритель в системе охлаждения устроен так, что жидкий хладоген кипит в трубках соединенных между собой пластинчатыми ребрами. В компьютерных системах охлаждения наиболее распространенно использование медных блоков, которые могут передать тепло от источника к испарителю. После того как хладоген испарился, он возвращается “домой” в компрессор, перенося тепло которое было отнято у испарителя. Процесс повторяется снова. Компрессор -> Конденсер -> Фильтр/Осушитель -> Капиллярная трубка/Расширительный клапан -> Испаритель.
Как было сказано в самом начале, основным различием хладогенов является температура их кипения. Но не надо думать что можно с легкостью заменить один хладоген другим. Одни Хладогены заменяемы, другие нет. Ниже приведена таблица названий и температур кипения различных хладогенов.
Надеюсь, эта статья помогла многим понять принципы работы холодильных установок.
Позже я планирую выложить также другие переводы интересных статей посвященных фреонкам.
Описание принципа работы холодильной установки
Обычному человеку, как правило, нет необходимости разбираться в принципе действия холодильной машины, для него важен результат. Результатом работы холодильной установки является: охлажденные продукты – от замороженных овощей, до мясо-молочной продукции или например охлажденный воздух, если речь идет о сплит-системах.
Другое же дело, когда холодильные машины выходит из строя и для проведения ремонта холодильных установок требуется вызов специалиста. В данном случае уже было бы не плохо разбираться в принципе работы таких агрегатов. Хотя бы для того, чтобы понимать необходимость замены или ремонта составляющей холодильной машины.
Основное назначение холодильной установки – это забор тепла от охлаждаемого тела и перенос этого тепла или энергии другому объекту или телу. Для понимания процесса требуется уяснить простую вещь – если мы нагреваем или сжимаем тело, то мы сообщаем этому телу энергию (или тепло), охлаждая и расширяя, мы отбираем энергию. Это основной принцип, на основе которого и построен перенос тепла.
В холодильной машине для переноса тепла применяются хладагенты – рабочие вещества холодильной машины, которые при кипении и в процессе изотермического расширения отнимают теплоту от охлаждаемого объекта и затем после сжатия передают её охлаждающей среде за счёт конденсации
Холодильный компрессор 1 отсасывает газообразный хладагент – фреон из испарителей 3, сжимает его и нагнетает в конденсатор 2. В конденсаторе 2 фреон конденсируется и переходит в жидкое состояние. Из конденсатора 2 жидкий хладагент попадает в ресивер 4, где происходит его накопление. Ресивер оснащен запорными вентилями 19 на входе и выходе. Из ресивера хладагент поступает в фильтр-осушитель 9, где происходит удаление остатков влаги, примесей и загрязнений, после этого проходит через смотровое стекло с индикатором влажности 12, соленоидный вентиль 7 и дросселируется терморегулирующим вентилем 17 в испаритель 3.
В испарителе хладагент кипит, забирая тепло от объекта охлаждения. Пары хладагента из испарителя через фильтр на всасывающей магистрали 11, где они отчищаются от загрязнений, и отделитель жидкости 5 поступают в компрессор 1. Затем цикл работы холодильной установки повторяется.
Отделитель жидкости 5 предотвращает попадание жидкого хладагента в компрессор. Для обеспечения гарантированного возврата масла в картер компрессора, на выходе из компрессора устанавливаться маслоотделитель 6. При этом масло через запорный вентиль 24, фильтр 10 и смотровое стекло 13 по линии возврата – поступает в компрессор.
Виброизоляторы 25, 26 на всасывающей и нагнетательной магистралях гасят вибрации при работе компрессора и препятствуют их распространению по холодильному контуру.
Компрессор оснащён картерным нагревателем 21 и двумя запорными вентилями 20. Картерный нагреватель 21 выпаривает хладагент из масла, предотвращая конденсацию хладагента в картере компрессора во время его стоянки и поддержания заданной температуры масла.
В холодильных машинах с полугерметичными поршневыми компрессорами, у которых в системе смазки установлен масляный насос, используется реле контроля давления масла 18. Задача этого реле – отключить компрессор в случае снижения давления масла в системе смазки.
В случае установки агрегата на улице он должен быть дополнительно укомплектован гидравлическим регулятором давления конденсации, для обеспечения стабильной работы в зимних условиях и поддержания необходимого давления конденсации в холодное время года.
Реле высокого давления 14 управляют включением/выключением вентиляторов конденсатора, для поддержания необходимого давления. Реле низкого давления 15 управляет включением/выключением компрессора.
Аварийное реле высокого и низкого давлений 16 предназначено для аварийного отключения компрессора в случае пониженного или повышенного давления.
Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.
1. Общие сведения о холодильных машинах
Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).
Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.
Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.
Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.
Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.
2. Термодинамические циклы холодильных установок
Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.
Чтобы отводимая от «холодного» источника теплота могла быть отдана «горячему» источнику (обычно — окружающему воздуху), необходимо поднять температуру рабочего тела выше температуры окружающей среды. Это достигается быстрым (адиабатным) сжатием рабочего тела с затратой работы или подводом к нему теплоты извне.
В обратных циклах количество отводимой от рабочего тела теплоты всегда больше количества подводимой теплоты, а суммарная работа сжатия больше суммарной работы расширения. Благодаря этому установки, работающие по подобным циклам, являются потребителями энергии. Такие идеальные термодинамические циклы холодильных установок уже рассмотрены выше в пункте 10 темы 3. Холодильные установки различаются применяемым рабочим телом и принципом действия. Передача теплоты от «холодного» источника «горячему» может осуществляться за счет затраты работы или же затрат теплоты.
2.1. Воздушные холодильные установки
В воздушных холодильных установках в качестве рабочего тела используется воздух, а передача теплоты от «холодного» источника «горячему» осуществляется за счет затраты механической энергии. Необходимое для охлаждения холодильной камеры понижение температуры воздуха достигается в этих установках в результате быстрого его расширения, при котором время на теплообмен ограничено, и работа в основном совершается за счет внутренней энергии, в связи, с чем температура рабочего тела падает. Схема воздушной холодильной установки показана на рис 7.14
Рис. 14. Схема воздушной холодильной установки: ХК — холодильная камера; К — компрессор; ТО — теплообменник; Д — расширительный цилиндр (детандер)
Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 — 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается — теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра — детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.
2.2. Парокомпрессорные холодильные установки
В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.
Температура кипения tкип при давлении р = 0,1 МПа, °С
Критическая температура, °С
Температура замерзания, tзам, °С
Скрытая теплота парообразования при tкип, кДж/кг
Фреоновые холодильные установки — устройство, схемы
Компрессионные холодильные установки, работающие на фреоне-12 широко распространены в системах охлаждения судовых провизионных камер и кондиционирования воздуха.
На рис. 128, б приведена принципиальная схема фреоновой автоматизированной холодильной установки, обслуживающей две провизионные камеры с различными температурами. Парожидкостная смесь поступает в испарительные батареи, где кипит за счет тепла воздуха камер и хранящихся в них продуктов питания, охлаждая их. Образовавшиеся в батареях испарителя пары хладагента отсасываются компрессором, сжимаются и нагнетаются в конденсатор. В конденсаторе происходит сжижение (конденсация) паров хладагента путем отвода тепла забортной водой, проходящей по трубам.
Компрессор необходим для понижения давления в испарительных батареях, получения низкой температуры кипения хладагента и создания повышенного давления нагнетания, при котором возможен переход фреона из компрессора в конденсатор.
Из конденсатора жидкий фреон, пройдя теплообменник, фильтросушитель и соленоидный вентиль, поступает в терморегулирующий вентиль, который регулирует количество фреона, идущего в батареи испарителя. В ТРВ происходит дросселирование жидкого фреона, давление его снижается от давления конденсации 4—8 ати до давления кипения 0,3—1 ати. Таким образом, терморегулирующий вентиль разделяет систему хладагента на сторону высокого давления (конденсации)—от нагнетательной полости компрессора до ТРВ и сторону низкого давления (давления всасывания или кипения)—от ТРВ до всасывающей полости компрессора.
Компрессоры фреоновых холодильных установок по конструкции могут быть с вертикальным, V- и W-образным расположением цилиндров. Они делятся на прямоточные и непрямоточные по направлению движения паров холодильного агента в цилиндре.
В малых холодильных установках в основном применяются непрямоточные простого действия компрессоры, в которых всасывающие и нагнетательные клапаны расположены в одной плите, помещенной на торце цилиндрического блока.
В прямоточных компрессорах всасывание происходит через поршень и клапан, встроенный в его головке. При этом направление движения пара хладагентов в цилиндре не изменяется, т. е. он совершает прямой ток. Это увеличивает производительность компрессора за счет уменьшения теплообмена между стенками цилиндра и паром хладагента.
Фреоновые компрессоры выполняются без охлаждающей рубашки, так как температура паров фреона в конце сжатия незначительна. Охлаждение цилиндров производится воздухом и для этого на наружной поверхности блока делают ребра.
Компрессор ФВ-4. На рис. 129, а показан отечественный фреоновый компрессор марки ФВ-4, выпускаемый Одесским заводом холодильных машин. Компрессор двухцилиндровый, вертикальный, простого действия, непрямоточный, холодо-производительностью 4000 ккал/ч. Число оборотов вала в минуту 850, диаметр поршня 67,5 мм и ход поршня 50 мм.
Шатуны стальные штампованные, двухтаврового профиля. Поршень алюминиевый с двумя уплотнительными и одним маслосбрасывающим кольцами. Смазка механизма движения и цилиндров производится разбрызгиванием.
Всасывающие и нагнетательные клапаны пластинчатые, полосовые самопружинящие и расположены на общей плите, помещенной на торце цилиндрового блока. На клапанную плиту опирается крышка блока (общая для двух цилиндров), имеющая перегородку для разделения полостей всасывания и нагнетания.
Уплотнение коленчатого вала в месте выхода из картера производится сильфонным сальником. Препятствие для выхода фреона из картера создают сильфон (гофрированная латунная трубка), прокладка и притертые поверхности уплотнительных колец.
Компрессор ФВ-12. Компрессор фреоновый вертикальный двухцилиндровый прямоточный марки ФВ-12, холодопро-изводительностью при наибольшем числе оборотов 12 000 ккал/ч (рис. 130). Он рассчитан на работу при трех различных числах оборотов в минуту — 480, 720 и 960, соответственно которым холодопроизводительность равна 7000, 10000 и 12 000 ккал/ч.
Цилиндры и картер компрессора представляют единую чугунную отливку с запрессованными цилиндровыми втулками. Охлаждение цилиндров воздушное. Для лучшего теплообмена крышка цилиндров и в верхней части цилиндровый блок компрессора имеют ребра.
Вал компрессора стальной, двухопорный, двухколенный (колена под углом 180°) с двумя противовесами, опирается на два шариковых подшипника.
Поршни чугунные с тремя уплотнительными и одним масло-съемным кольцами.
Шатуны стальные, облегченные, двутаврового сечения с разъемной нижней и неразъемной верхней головками. Нижние головки залиты баббитом, в верхние запрессованы биметаллические втулки.
Всасывающие и нагнетательные клапаны самодействующие. Всасывающие ленточного типа установлены на днище поршня, а нагнетательные с пластинками и пружинами смонтированы на клапанной доске, укрепленной на верхней плоскости блока.
Сальник компрессора двухмембранный с масляным затвором и металлическими кольцами трения. Он состоит из подвижных частей (стопорный фланец, подвижное кольцо), вращающихся вместе с коленчатым валом, и неподвижных частей (упругих диафрагм с упорным кольцом и обоймой). Неподвижные части закрепляются с помощью буксы и крышки на переднем фланце блоккартера с уплотнением прокладками. Уплотнение достигается за счет упругости диафрагм и взаимно-притертых неподвижного кольца и обоймы с внешним ободом подвижного кольца.
Масло в сальник при работе компрессора поступает непрерывно и избыток его сливается из бачка в картер.
Смазка компрессора принудительная от шестеренчатого насоса, расположенного в задней крышке и приводимого в движение коленчатым валом через поводок. Масло подается в двух направлениях: в сверление коленчатого вала и полость сальника. В месте забора масла из картера установлен сетчатый фильтр. По сверлениям коленчатого вала масло подается для смазки мотылевых и по трубке вдоль шатуна — головных подшипников.
В случае прекращения подачи масла полость сальника остается наполненной благодаря обратному клапану и этим сохраняется плотность сальника при остановках машины. Для контроля работы масляного насоса на его корпусе установлен манометр.