Реле от потери фазы для глубинного насоса

Реле контроля фаз

Реле контроля фаз 3-фазное Omron и Zamel

В данной статье рассмотрим со всех сторон очень полезное устройство промышленной электроники — реле контроля фаз, другие названия – трехфазное реле контроля напряжения, реле контроля обрыва и чередования фаз . Из названия можно догадаться, что это за штука – реле, которое контролирует качество трехфазного напряжения и правильность его подключения.

Как всегда в таких статьях, будут теория, схемы, фото, инструкции.

Свою функцию это устройство выполняет нечасто, чуть чаще, чем реле напряжения. Однако, без него бывает, что тратится лишнее время на наладку оборудования. Кроме того, это устройство защитит оборудование от некачественного питания.

Важно, что надо уяснить – реле контроля фаз бывает только трехфазное, и всегда подключается только в 3-фазную сеть!

Зачем нужно трехфазное реле контроля фаз

Реле контроля фаз необходимо ставить там, где часто производится переподключение к питающему трехфазному напряжению, а также там, где важна фазировка (правильное чередование фаз).

Например, реле контроля фаз может быть полезно в оборудовании, которое часто переносится с места на место, и в котором критично перепутать фазы. В некоторых устройствах неправильное чередование фаз может привести к неправильному функционированию и поломке. Например, винтовой компрессор, если его включить в неправильном направлении более чем на 5 секунд, может полностью выйти из строя.

Кроме того, при подключении такого оборудования может сложиться ошибочное мнение что его надо ремонтировать, и ремонтный персонал будет некоторое время чесать репу, пока кто-то не подаст нужную мысль: «А может, фазы перепутаны?». А потом ещё кто-то скажет ещё более нужную мысль: «Надо бы поставить реле контроля фаз…»

Принцип работы и функции реле контроля фаз

Итак, в каждом станке существует правильный порядок фаз, при котором все двигатели при данном подключении крутятся в правильном направлении. Если питающие фазы перепутаны, то всё тоже будет крутиться, но неправильно, и возможно недолго.

В реле контроля фаз есть схема, которая вычисляет порядок чередования фаз (Phase-sequence), и в соответствии с этим порядком срабатывают выходные контакты. Контакты эти можно подключить куда угодно — в контрольную цепь, к звонку или лампочке, разрывать цепь питания цепь питания всего устройства или катушки контактора двигателя.

Последнее применение рекомендует производитель, я же рекомендую включать его в аварийную (контрольную) цепь, чтобы весь станок, в котором установлено это реле, не мог запуститься. Естественно, если аварийная цепь выполнена правильно, как я это рекомендую в статье по приведённой ссылке.

Это главное применение.

Другое применение — защита от пропадания фазы (Phase-loss). Или от существенного понижения напряжения на одной из фаз (асимметрия, или перекос фаз) (Three-phase Asymmetry).

Последние две функции в принципе идентичны, весь вопрос только в уровне падения напряжения.

От пропадания фазы для защиты электродвигателей также применяется мотор-автомат или тепловое реле, но они срабатывают по тепловой перегрузке, а это уже критический режим. А реле контроля фаз — электронное устройство, и сработает раньше (1-3 сек), не дав двигателю перегреться. В случае выравнивания фаз включение происходит тоже не сразу, а через необходимое время (5-10 сек).

Уровень напряжения асимметрии можно выставить во всех реле контроля фаз, а вот время включения/выключения, как правило, регулируется лишь в навороченных моделях. Кроме того, для функции обнаружения асимметрии существует такой полезный параметр, как гистерезис, который обеспечивает более «плавную» работу устройства. Он тоже, как правило, не регулируется.

Как работает гистерезис, спросите у того, кто знает что это такое))

Таким образом, можно сказать, что реле контроля фаз — устройство, которое контролирует качество трехфазного питающего напряжения в промышленном оборудовании. И естественно, что реле контроля фаз – 3-х фазное устройство.

Устройство и модели реле контроля фаз

Zamel CKM -01

Пойдём от простого к сложному. В качестве примера рассмотрим сначала реле СКМ-01 производства польской фирмы Zamel .

CKM-01 от Zamel. Краткие характеристики на упаковке

У реле на вход подаётся три фазы ( L 1, L 2, L 3) и ноль ( N ), питание внутренней схемы – от фазы L 1. Выходное реле — с одним переключающим контактом. Также имеются два индикатора, которые показывают чередование и асимметрию фаз.

Вот как это реле выглядит вживую:

Реле контроля фаз Замель CKM-01. Внешний вид

Электрическая схема реле CKM -01 Zamel очень простая, собрана всего на двух транзисторах. Внутренности CKM -01 Zamel можно рассмотреть ниже на фото.

Честно говоря, никогда бы не поверил, что такое сравнительно сложное устройство можно собрать всего на 2-х транзисторах!

Zamel CKM-01. Внутреннее устройство

Zamel CKM-01. Внутреннее устройство

Zamel CKM-01. Внутреннее устройство

Инструкцию от производителя можно будет скачать в конце статьи.

РНПП-311

Недавно появилось реле РНПП-311М, у него более современный и компактный корпус и больше настроек.

Реле напряжения, перекоса и последовательности фаз РНПП-311М

Далее, по степени увеличения функциональности.

OMRON K8AB

Более навороченная модель — OMRON K8AB:

Omron K8AB-PA. Внешний вид

Тут уже есть дополнительный регулятор времени срабатывания (реагирования). Также это реле реагирует не только на понижение, но и превышение напряжения на одной из фаз.

Схема собрана на микроконтроллере, как и все модели, которые рассмотрю ниже.

Временная диаграмма и схема, расположенная на боковой стенке этого реле:

Omron K8AB – временные диаграммы, настройка и схема

В линейку реле Omron K8AB входят 4 модели, и они обеспечивают очень расширенные настройки, на любой вкус. Инструкция – там же.

Carlo Gavazzi DPC01

Ещё одно реле контроля напряжения, из тех, что мне попадались – Carlo Gavazzi DPC01. Оно участвует в схеме промышленного компрессора-холодильника, про который я писал в статье про применение Устройства Бесперебойного питания (ИПБ, UPS) или про то, как я спас молоко от прокисания.

Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Carlo Gavazzi DPC01

На входе – три фазы, на выходе – два реле, контакты которых в данном случае подключались в схему последовательно и рубили цепь питания схемы управления. Кроме четырех регуляторов настроек, под крышкой с сорванной пломбой – ещё переключатели режимов работы.

В той статье я не написал, что пытался запустить этот холодильник, исключив это реле из схемы. Но Carlo Gavazzi оказался прав – компрессор не хотел запускаться при таком плохом качестве напряжения.

Евроавтоматика ФиФ CKF-318-1

Устройство трехфазного реле контроля и наличия фаз белорусского производителя приведена в этой статье. Показано устройство и реальный пример подключения и установки в компрессоре.

Схема подключения реле контроля фаз

Если в оборудовании используются для подключении электродвигателей только частотные преобразователи, то реле контроля фаз не нужно — для частотника всё равно, в каком порядке на него приходят фазы, он всё равно выпрямляет переменное трехфазное напряжение и преобразует его в постоянное.

Однако, я рекомендую ставить такое реле в любой промышленной аппаратуре стоимостью от 1000 долл с трехфазным питанием. Ведь само реле стоит чуть более 1000 руб (отечественные модели), а в случае проблем с питанием сразу даст об этом знать.

Итак, вот несколько схем подключения, которые рекомендуют производители. В принципе, отличий мало.

Схема подключения реле контроля трехфазного напряжения РНПП-311

Схема подключения реле контроля напряжения от OMRON

Схема подключения реле контроля напряжения от Carlo Gavazzi

Последняя схема ценна и тем, что дано условное графическое обозначение реле контроля напряжения. И контакты реле показаны с задержкой включения!

Справедливости ради стоит сказать, что в современном оборудовании на контроллерах реле контроля фаз как отдельный блок иногда не применяется, а реализовано непосредственно на контроллере.

А теперь, как и было обещано, инструкции:

Zamel CKM-01 manual 1. (извиняюсь за качество, лучше не нашёл(

Как защитить насос?

Содержание: Защита насоса по току. Как защитить насос? Защита от перепадов напряжения. Защита от сухого…

Содержание:

Защита насоса по току.

Защита от сухого хода.

Защита от коротких замыканий.

Блоки защиты насосов.

Выводы.

Защита насоса по току.

Для нормальной работы насоса из любого источника водоснабжения, будь то скважина на воду или колодец, нужен правильный подбор и система автоматики.

Но очень часто, когда всё отлажено и настроено, мы жалуемся на слабый напор или вообще отсутствие воды. Это вводит в ступор даже бывалых мастеров.

Казалось бы, дорогое оборудование, точные настройки, всё должно быть хорошо, а что-то не так. Нет воды.

И дело тут не в фирменных материалах, и не умелых монтажниках. Часто насосу просто не хватает напряжения в сети электропитания.

Редко кто задаётся вопросом требуемой мощности для насоса. Чаще смотрят на потребление электроэнергии.

Тем не менее, очень важно и это указано в документации на оборудование, чтобы к насосу подавалось 210-220В(вольт). И не менее 50А(ампер).

Однако, в 21 веке, даже в Подмосковье не всегда ровная подача электроэнергии.

Особенно, в летнее время, в выходные дни, дачные поселения испытывают нехватку напряжения в сети из-за большого разбора.

Каждый участок, помимо насосов и освещения использует электрические газонокосилки, системы автополива газонов и много ещё чего электрического.

И очень уж обидно приехать к заказчику за тридевять земель и обнаружить при измерении в электросети 160-180В.

Казалось бы, видно по освещению, что лампы горят не в полную силу. И электроплита на кухне не греет, как положено. Но всё равно нужно напоминать про обычный стабилизатор напряжения.

Как защитить насос?

Однажды мне позвонили из садового товарищества в Наро-фоминском районе, Московской области и пожаловались на падение давления из скважины общего потребления СНТ.

Дорога не близкая и поэтому инструмент с собой взяли, какой только возможно.

Тестер электронный, пробник для электросети, манометры всевозможные и даже лебёдку для подъёма насоса из скважины.

Причину почти выяснили ещё не доехав до места вызова. Просто на пути мы увидели новые столбы электросети, ведущие прямо к трансформатору. От трансформатора провода разбегались по трём товариществам.

Когда приехали на место, выслушали председателя, определили составную жалобы, у нас всё сошлось.

Электрики меняли опоры электросетей по своему плану, а подключение к трансформатору провели безалаберно.

Поменяли местами провода. И от трансформатора к счётчику товарищества электричество пошло уже не так, как было задумано ранее. Фазы местами поменяли.

Насос в коллективных скважинах, как правило, использует напряжение 380 вольт. И при смене полярности, насос крутится в другую сторону.

Так произошло и сейчас. трёхфазный насос, даже вращаясь в другую сторону, будет поднимать воду в трубы, но уже с меньшим напором.

А так, как электрики до товарищества не дошли и никого не предупредили, то и на новые столбы никто внимания не обратил.

В общем, поменяли мы фазы местами и всё заработало нормально. Понадобилась лишь отвёртка.

Вот такие бывают случаи.

Защита от перепадов напряжения.

Там, где мы с нуля обустраиваем коллективные скважины, мы устанавливаем пульты управления насосами. Они «видят» полярность и защищают насос от скачков напряжения в сети.

Насосы в индивидуальных скважины и колодцы, мы в обязательном порядке рекомендуем подключать через стабилизаторы. Хотя бы один, хотя бы на линии, к которой подключён насос скважины.

При потреблении насосом 2 Квт/час, спасает стабилизатор мощностью 4-5 Квт. Стоимость такого прибора, не более 10000 рублей. Это во много раз меньше, чем установленное оборудование для водоснабжения.

Блоки защиты насосов.

В конце 90-х, начале 2000-х годов, мастера часто применяли блоки защиты насосов. Сейчас они, отработав свой срок, потихоньку выходят из строя, приводя в недоумение своих хозяев.

Дело в том, что направляющие магнитных пускателей, да и сами контакты изнашиваются и работают через раз. Сработает магнит- запустится насос, не сработает – насос «молчит».

И, как правило, заменить на такой же уже не получается. Либо не выпускаются уже, либо изменены размеры и конфигурация. Да так, что в старый корпус не вставить его.

Вот и приходится либо целиком блок защиты менять, либо исключать его из схемы и соединять просто через реле давления.

Если блок полноценный, то в нём должны присутствовать и автомат защиты от скачков напряжения, и слаботочные контакты для реле давления.

Так же в них устанавливается защита насоса от сухого хода. Основанная на анализе потребляемого тока, она остановит насос если вдруг в скважине не окажется воды.

Стоимость полноценного блока защиты насоса сейчас варьируется в пределах 18000-25000 рублей.

Естественно, такие траты кажутся нецелесообразными, если изучить рынок. Потому, как выбор сегодня на любой вкус и кошелёк.

Например, реле сухого хода и стабилизатор обойдутся максимум в 11000 рублей. Причём, если у вас весь дом подключён через стабилизатор, то соответственно, затраты составят 1000-1500 рублей.

Защита от сухого хода.

По аналогии с реле давления, этот прибор тоже прозвали реле. Хотя, по сути, ни то ни другое реле не являются, но мы сейчас не об этом.

В отличии от реле давления, реле сухого хода не включается, если в системе не наберётся определённое давление. Это и спасает насос, если вдруг упал уровень воды ли образовался свищ в трубе.

Чтобы возобновилась работа системы водоснабжения нужно нажать кнопку на корпусе прибора и удержать до набора нужного давления.

Далее, давление воды будет удерживать контакты замкнутыми и можно отпустить кнопку.

Только после этого поступит электропитание на реле давления и насос продолжит работу в нормальном режиме.

И так до следующего опустошения системы или критического падения давления.

Защита от коротких замыканий.

Это такие выключатели, которые обычно кучно установлены рядом с электросчётчиком. Простыми словами, автоматы.

Именно они спасают в большинстве случаев от большой беды многие дома и дачи.

До недавнего времени были широко распространены фарфоровые предохранители с плавкими элементами. Они хорошо подходили для однотипной нагрузки советских квартир.

Сейчас число бытовых приборов стало намного больше, в результате чего вероятность получения возгорания со старыми предохранителями возросла.

Чтобы не допустить этого, необходимо тщательно подойти к выбору автомата с правильными характеристиками.

Избегайте избыточных запасов мощности.

Окончательный выбор делается после выполнения нескольких простых действий. Подробнее о выборе автоматов, их правильном подборе и распределении нагрузки, читайте здесь- https://remontoni.guru/elektropribory-i-osveshhenie/raznovidnosti-elektricheskih-avtomatov-i-kak-sdelat-pravilnyj-vybor.html

От себя по этому поводу, скажу одно – при помощи автоматических выключателей, тысячи насосов спасено от перегорания обмотки двигателя.

УЗО насос не спасёт.

Все вышеперечисленные приборы и устройства обязательно защитят ваше оборудование от различных угроз со стороны электричества.

Главное, никогда не путайте автоматические выключатели с устройствами защитного отключения (УЗО).

Отличие УЗО от автоматического выключателя состоит в том, что имеет функцию защиты от тока утечки, автомат такую защиту не имеет.

— в современных насосах (особенно с функциями защиты от сухого хода и перегрева и т.д.) возникают процессы, которые «УЗО» распознаёт как утечку.
— в реле давлении возникают процессы, которые так же расцениваются УЗО как утечки (искра при размыкании-замыкании контактов)
— или, тушится пожар, а «подлое» «УЗО» отключило насос.

Выводы.

Если вы внимательно отнесётесь ещё и к гидравлической части системы водоснабжения, то правильная работа вашего оборудования надолго обеспечит вам спокойную жизнь.

Совместите все степени защиты в один комплекс и не забудьте изучить правильное распределения давления в гидроаккумуляторе.

Реле контроля фаз

Всем доброго времени суток, уважаемые читатели блога nasos-pump.ru

Реле контроля фаз

В рубрике «Принадлежности» рассмотрим реле контроля фаз. В современной жизни насосное оборудование используется широко и повсеместно. Естественно существует проблема защиты этого оборудования от некачественного энергоснабжения. Особенно это актуально для двигателей насосов, у которых питание осуществляется от трёхфазного напряжения. По сравнению с однофазным напряжением, где в основном бывает повышенное или пониженное напряжение сети, у трехфазных сетях еще случаются и перекос фаз, и замыкание фаз, и обрыв фаз, и нарушение последовательности чередования фаз. Все это приводит, как правило, к выходу асинхронного электродвигателя насоса, а в некоторых случаях и самого насоса из строя. Для защиты оборудования применяется реле контроля фаз, которое используется для контроля наличия и симметрии напряжений в трехфазных и однофазных питающих сетях. Прибор выполнен на современной микропроцессорной элементной базе, имеет высокую надежность, простую конструкцию и легко настраивается. Во время эксплуатации оборудования устройство постоянно контролирует параметры сети и если хотя бы один из контролируемых параметров не соответствует, то работа оборудования блокируется, если все параметры возвращаются в норму, то происходит автоматическое включение оборудования. К контролируемым параметрам относится как симметричный так и не симметричный выходы напряжения за допустимые пределы, нарушение порядка чередования фаз, обрыв фаз, пропадание фаз.

Технические характеристики

В качестве примера рассмотрим технические характеристики реле контроля фаз HRN-43 производства фирмы ETI Словения. Характеристики приведены в таблице

Таблица. Характеристики реле контроля фаз

Используется для контроля максимального Umax и минимального Umin уровней напряжения, асимметрии, обрыва и последовательности чередования фаз. Обладает функцией “Память”, для возврата из аварийного состояния в рабочий режим. Имеет индикацию: наличие питания, повышенного или пониженного напряжения, последовательности чередования фаз и асимметрии. Крепится данное изделие на DIN рейку.

На (Рис. 1) приведена схема использования реле контроля фаз для з ащиты трехфазного двигателя.

Схема подключения насоса

Эксплуатация, обслуживание и ремонт

В процессе эксплуатации насосного оборудования с трехфазным двигателем случаются различные ситуации с питающим напряжением. Особенно это актуально для стран бывшего союза. К таким ситуациям относятся: повышенное или пониженное напряжение в сети, асимметрия или перекос фаз, пропадание или обрыв фаз, нарушение чередования последовательности фаз. Рассмотрим эти случаи более подробно.

Повышенное или пониженное напряжение сети. Повышение и понижение напряжения, а также резкие скачки напряжения питания оказывают очень сильное влияние на работу асинхронных двигателей, которые наиболее часто применяются в насосном оборудовании. В случае изменения напряжения питающей сети изменяется механическая характеристика асинхронного двигателя – зависимость вращательного момента от скольжения. Вращательный момент на валу двигателя пропорционален квадрату напряжения на его клеммах. При низком напряжении сети питания снижается вращающий момент и частота вращения ротора двигателя, из-за увеличения его скольжения. Низкое напряжения ухудшает условия запуска двигателя, так как это приводит к уменьшению его пускового момента. При повышенном напряжении питающей сети происходит быстрое «старение» обмоток, что приводит к сокращению срока службы двигателей. Быстрое «старение» обмоток ведет к «пробою» обмоток между собой или на корпус. Для ремонта необходимо перематывать статор двигателя. Чтобы избежать таких неприятных моментов лучшим способом защиты являются стабилизаторы напряжения. Однако стоимость стабилизаторов в особенности на большие мощности весьма большая и может быть соизмерима со стоимостью насосного оборудования. Также для защиты насосного оборудования можно использовать и реле контроля фаз. Для этого на реле задаются пределы допустимых колебаний питающей сети. В случае выхода параметров питающей сети за заданные, реле отключает нагрузку. К недостаткам такой защиты нужно отнести то, что на время когда сеть не соответствует заданным параметрам, насос будет отключен. На индикации будет гореть светодиод, указывающий, что в сеты повышенное или пониженное напряжение. Это критично там, где идет технологический процесс, и оборудование не может быть остановлено.

Асимметрия или перекос фаз. При трехфазном питании очень часто бывают ситуации, когда одна из фаз недогружена, а вторая перегружена. Режим запуска в асинхронном двигателе характеризуется кратковременной работой обмоток статора в режиме короткого замыкания и потребляемый двигателем ток в 5-7 раз превышает номинальный. Частые запуски при перекосе фаз, могут вызывать перегрев изоляции и увеличивать потребляемый ток. Как следствие двигатель может, не запустится, или обмотки статора выйдут из строя. Реле позволяет задать уровень перекоса фаз в пределах 5-20%. В случае превышения заданного уровня асимметрии происходит отключение двигателя от сети питания и тем самым оборудование защищается от недопустимых режимов питающей сети и от возможных отказов, а светодиод, указывающий ни асимметрию фаз, при этом загорится.

Пропадание или обрыв фаз. Это один из наиболее часто встречаемых случаев, При пропадании фазы трехфазный двигатель не запускается в работу. Как результат выгорание двух обмоток, которые были под напряжением. Если пропадает одна из фаз в процессе работы двигателя, то ситуация будет аналогичной – выгорание двух фаз из-за повышенно потребляемого тока. Реле контроля фаз отключит нагрузку от сети при пропадании одной из фаз и тем самым защищает статор двигатель от выгорания обмоток.

Нарушение последовательности чередования фаз. Для двигателей с трехфазным питанием очень важно не нарушать чередование последовательности фаз, так как от этого зависит направление вращение двигателя. В случае нарушения последовательности чередования фаз двигатель начинает вращаться в другую сторону. При неправильном вращении двигателя изменяются его гидравлические характеристики (напор насоса очень сильно уменьшается). Более серьезные последствия – это выход из строя и насоса и двигателя. Реле контролирует правильную последовательность фаз. В случае изменении чередования фаз изделие отключит двигатель. Если включить реле с неправильной последовательностью чередования фаз, то нагрузка не будет подключена к сети питания, до устранения неисправности.

Используя довольно таки простое и не очень дорогое реле контроля фаз можно уберечь насосное оборудование от выхода его из строя и как следствие дорогостоящего ремонта.

Водокачка. Насос трёхфазный. Автоматика. Контроль фаз. ХЕЛП!

Здравствуйте.
В СТ пришлось чинить водокачку.
Большая такая башенка с сильным насосом.
Технические подробности.
Насос трёхфазный 63 А (Контроль сухого хода отключен.) Вроде как вибрационный (типа большой «Малыш»).
Автоматика управляется датчиком уровня — три штыря разной длины (два длинных один короткий), один из длинных — общий, второй — нижний уровень, третий (короткий) — верхний уровень.
Автоматика включает маленький пакетник напряжением 220в, а тот в свою очередь включает катушку огромадного пакетника, который уже и включает насос.

Некоторое время на башне стояла автоматика, которая контролировала кучу параметров (перекос фаз, изоляцию насоса и т.д) но в связи с тем, что после очередной профилактики местными гоблинами фазный провод отгорел (ну ещё бы — провод медный, клемма — аллюминиевая обжимная) и попал на провода датчика уровня — все мозги автоматики выгорели наглухо. Часть контролей до этого принудительно вырезали — контроль изоляции например. Однако дорогостоящий насос выжил.
Я поставил автоматику, используемую уже лет 30, поменяв на новую ей всю требуху. Однако она только включает-выключает насос по датчикам уровня.
В СТ регулярно отгорают фазы, и очень не хотелось бы, чтобы насос работал на двух или с перехлёстом. Поэтому хочется поставить реле контроля фаз, которое будет снимать напряжение исключительно как можно ближе к самому насосу. Как я понимаю, самое близкое место — это подающие (со стороны АВТОМАТА ПИТАНИЯ) клеммы силового пакетника. А какую цепь из перечисленных в первом абзаце размыкать управляющими контактами реле контроля фаз. Боюсь колебательного процесса (каждое включение- выключение насоса при подаче воды с глубины 120 метров сопровождается не кислым гидроударом по обратному клапану). Если можно, порекомендуйте конкретную модель реле контроля фаз. ток в цепи управления маленького пакетника — около 2-х ампер при 220 в, ток в цепи управления большого пакетника — около 3х А при 380 в.
И ещё. Реле контроля фаз планируется ставить только для контроля потери или перехлёста фаз. Дополнительные функции как-то снижение напряжения ниже порога или увеличение, ещё какой-нибудь сервис (кроме разве что временных задержек включения-выключения) у нас в СТ — вреден Просто водокачка будет работать тогда только ночью и то редко .
Спасибо тем, кто дочитал, перечитал и понял.

2Old major Вопрос интересный, и я начал бы с того, что восстановил бы всю автоматику.

avmal написал :
. я начал бы с того, что восстановил бы всю автоматику

Чуть истории и социологии. СТ — более 30лет. Водокачке — тоже. Изначально на ней стояла простая автоматика (которую я в результате и вернул на место), автором которой является один из до сих пор здравствующих членов СТ. Проста как мир и свои функции выполняет. Скважина такова, что сухой ход насоса исключен практически. За 30 лет было заменено 2 насоса. первый проработал с 1975 по 2003 год. Умер естественной смертью. Второй проработал 2003-2005. Умер из-за выгорания фазы на КТП. Фаза стала выгорать из-за смены состава электриков из-за естественной убыли. Нынешние электрики в качестве работы не заинтересованы, результат их работы — не грамотно обслуживаемое КТП и водокачка — а «есть свет » и «Есть вода». За каждое такое событие электрик получает 500 рублей. Гарантия работы — 3 дня. Как правило через неделю свет по крайней мере пропадает опять. Перегрузки большие.
Итак про автоматику. Когда старая автоматика поизносилась физически (ключевой элемент — оборонное хитрое реле) на станцию притащили штатную установку автоматики СУЗ-100, предназначенную именно для того насоса, что стоит в скважине. Работала в наших условиях отвратительно, её пускатель просто выгорал от насоса за месяц. При разбросе напряжения по фазам более 10 процентов — вставала намертво. В результате пускатель выгорел дотла, и фазный провод пережёг провода, идущие на датчик уровня. При наличии фазы там все низковольтные цепи СУЗ-100 умерли сразу. Восстановлению не подлежит.
Я просто утрахался сидеть без воды,решил разобраться на досуге, откуда вода из крана течёт. Зашел тут как-то на башню — а она открыта.Увидел что там всё в горелых соплях и ужаснулся. Выгнал оттуда гоблинов-электриков,повесил гаражный замок. После чего занялся самой башней. Перебрал всё что хоть как-то даже выглядело горелым, снял в общей сложности килограмм 30 горелых девайсов и проводов. Вернул схему управления насосом к той, что нарисована на шкафу 1975 года выпуска, с использованием более современных и главное НОВЫХ комплектующих. Даже счётчик заставил работать и местный энергосбыт у меня его принял и опломбировал, изрядно правда удивившись .
Нашел в углу старую автоматику уровня, нашел деда-автора, у него нашел схему на автоматику и пару НОВЫХ реле оборонных . Поставил, группы контактов запаралелил. Работает она как и 30 лет назад. Без сбоев. Неделю уже. Ничего не греется. А вот то, что фаза уже в КТП может выгореть (оттуда питается башня и часть участков, вот участки то фазу и сжигают) меня заморочило — один насос уже потеряли так.

Кстати, я тута подумал и кажется решил проблему отсутствия фазы. Просто катушка, которую включает автоматика (первый слабый пускатель)будет питаться от одной фазы — если эта фаза пропадёт — всё вырубится, а питанте на катушку непосредственно силового пускателя насоса снимается с двух других фаз — если одна вырубится — тоже всё отрубится. Так что осталось питание автоматики переключить на другую фазу и все три будут подконтрольны.

Схемы автоматической защиты трехфазного двигателя при пропадании фазы

Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако они либо сложны, либо недостаточно чувствительны. Защитные устройства можно условно разделить на релейные и диоднотранзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.

Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.

Первый способ (рис. 14). В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключастся к трехфазной сети.

При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В к С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.

Второй способ (рис. 15). Защитное устройство основано на принципе создания искусственной нулевой точки , образованной тремя одинаковыми конденсаторами С1—C3. Между этой точкой и нулевым проводом О включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке O’ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1C3— бумажные, емкостью 4—10 мкФ, на рабочее напряжение не ниже удвоенного фазного.

Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, если применить конденсаторы с меньшей емкостью.

Третий способ (рис. 16). Схема защитного устройства аналогична схеме, рассмотренной в первом способе. При нажатии кнопки «Пуск» включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.

Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С — магнитный пускатель МП.

В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.

По сравнению со схемой защитного устройства трехфазного двигателя, рассмотренной в первом способе, это устройство имеет преимущество: дополнительное реле Р при выключенном двигателе обесточено.

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!

  • Схема датчика излучения сотового телефона
  • Кодовый замок с четырьмя кнопками (561ИЕ8)
  • Универсальный сетевой фильтр с защитой от перенапряжений
  • Защита радиоаппаратуры от повышения напряжения в сети 220V

Да, вроде всё хорошо, кроме того момента, что при пропадании одной из фаз двигатель послужит автотрансформатором и пропустит через себя часть другой фазы и есть ли гарантия, что этого напряжения хватит для отпускания катушки реле-пускателя?

Релейные схемы защиты от пропадания фазы НЕРАБОТОСПОСОБНЫ.
При пропадании фазы, ток, достаточный для удержания реле в замкнутом состоянии, будет поступать со стороны электродвигателя!! (вместо кружочка, обозначающего эл.двигатель нарисуйте внутреннюю схему с обмотками и карандашиком проследите путь тока 🙂 И не надо забывать, что эл. двигатель по сути тот же трансформатор и если на две обмотки будет подано напряжение, то в третьей обмотке однозначно будет ЭДС. Защита возможна ТОЛЬКО путем анализа и регистрации АСИММЕТРИИ фаз и напряжений при пропадании питающей фазы. Схема с конденсаторами вполне работоспособна.
За базар отвечаю, электромеханик с 35-ти летним стажем (диплом радиоинженера отличием).

Много раз использовал схему с двумя пускателями. Все отлично работает.В середине 90-х работал энергетиком в колхозе, денег не было и это был единственно доступный способ защиты насосов на скважинах.

Подтверждаю, релейные схемы полная чушь, как и схемы на двух пускателях. Они могут работать, только если на контакты двигателя повесить нагрузку в пару киловатт, чтобы часть наводок глушилась нагрузкой. Но кому это надо? Мотать лишнюю энергию. Ещё есть вариант получше, который возможно будет работать, взять три импульсных блока питания на 12 вольт, запитать каждый из них от разной фазы, и включить в Цепь пускателя три нормально разомкнутых реле с катушкой на 12 вольт. Вот блок питания вряд ли позволит работать от такого нестабильного напряжения и защита отключит блок и сработает реле разомкнув Цепь.

у меня несколько насосов поставил 3 реле на каждую фазу их н о контакты послед . в цепь управления всех насосов.