Ротор дарье конструкция принцип работы

Что такое ротор Дарье и как сделать его своими руками

Дата публикации: 27 июня 2019

  • Принцип работы
  • Устройство конструкции
  • Ротор Дарье своими руками

Ротор (или турбина) Дарье — это устройство, широко применяющееся в ветроэнергетике. Разработка принадлежит авиаконструктору Жоржу Дарье. Главное преимущество — способность работать при любых направлениях воздушного потока и при неблагоприятных погодных условиях.

Принцип работы

Ветровая турбина Дарье работает по тому же принципу, что и любое другое устройство этого типа. Работа основана на принципе вращения лопастей вокруг оси. Кинетическая или внутренняя энергия рабочего тела (газа или жидкости) преобразуется в механическую работу. У ротора Дарье ось вращения расположена перпендикулярно потоку источника энергии. Поскольку турбина приспособлена для использования альтернативных источников энергии, в роли рабочего тела выступает ветер.

Принцип работы конструкции ротора Дарье основан на разности аэродинамических показаний. Благодаря этому обеспечивается вращение лопастей механизма. После того как образовалась циркуляция потоков воздуха, устройство начинает вращаться бесперебойно.

На каждое крыло по отдельности воздействует сила подъема относительно воздушного потока. Показатели этой силы зависят от угла, который образовывается между лопастью и величиной скорости потока ветра. Момент силы, который образуется в момент запуска, носит переменный характер, а не постоянный. Вихреобразование ротора Дарье имеет определенную цикличность, которая связана с движением лопастей. Для создания подъемной силы, которая обеспечивает работу механизма, нужно обеспечить бесперебойное и непрерывное движение крыльев.

Устройство конструкции

Конструкция ротора проста. Трое аэродинамических крыльев закреплены на радиальных балках. Существуют три типа турбины Дарье:

  • Классический. Лопасти имеют форму полумесяца. Их размер достаточно большой — почти сравним с длиной основной оси. Основание имеет прочный устойчивый полукруглый фундамент.
  • Тип Н. Три крыла, имеющие прямую форму и расположенные относительно горизонтальных опор под прямым углом, находятся на верхнем отсеке конструкции. Опоры крепятся к несущей оси. Достоинства этой конструкции — быстроходность, высокая эффективность, полное отсутствие инфразвука. Ротор Н-образного типа прост в сборке и ремонте, надежней классической ветровой турбины Дарье, дешевле — и поэтому распространен в применении.
  • Винтообразный тип. Лопасти изготовлены в виде изогнутых спиралей. Они также расположены на верхнем отсеке несущей оси вращения. Благодаря закрученной форме крыльев, вращение ротора происходит равномернее. Благодаря этому нагрузка на несущие узлы снижается, а срок службы механизма увеличивается.

Для обеспечения работы бытовых электростанций чаще всего используется ротор Савониуса Дарье. Такое название носит ветровая турбина, совмещенная с ротором Савониуса, который выступает в роли стартёра (устройства запуска). Комбинированная конструкция отличается большей мощностью и производительностью по сравнению с «чистыми» типами. Область применения механизма не ограничивается только электростанциями — он может быть совмещен с теплогенератором и быть использован в системе теплоснабжения. А еще такой гибрид соединяют с насосами и применяют для закачки и откачки воды.

Каждый из трех типов имеет свои недостатки. Классическая ветровая установка обладает меньшей эффективностью. Установке с ротором Дарье необходимы генераторы. Самостоятельно она запускаться и раскручиваться не может. При сильных, ураганных порывах ветра механизм может начать функционировать самостоятельно, при этом процесс трудно поддается контролю.

Устройство Н-образного типа легкое в эксплуатации, но быстро изнашивается из-за больших аэродинамических нагрузок. Спиральный ветрогенератор за счет своей конструкции надежней, но технология его изготовления сложна, поэтому он стоит дорого.

Неоспоримое достоинство ротора всех видов — отсутствие зависимости от силы и направления ветрового потока. Допустимо расположение на прилегающей территории иных сооружений, что облегчает проведение ремонтных работ.

Ротор Дарье своими руками

Для работы понадобятся:

  • генератор;
  • лопасти;
  • болты для крепления;
  • шкурка для обработки;
  • металлические опоры;
  • мачта или иная деталь, подходящая на роль оси вращения;
  • инструменты (сверло, молоток и т.п.).

Лопасти можно приобрести в магазине или сделать из подручных материалов. Например, подойдут обрезки труб из поливинилхлорида.

Сначала выполняется чертеж. Затем подготавливается каждая деталь — лопасти нужно ошкурить, в опорах просверлить отверстия для крепежа. Проводится соединение опор с аэродинамическими крыльями.

На заранее приготовленное основание устанавливается ось. Основанием может служить бетонная заливка, металлическая конструкция. К оси крепятся лопасти.

Для подключения генератора необходимо владеть базовыми познаниями в электротехнике. В противном случае лучше доверить это дело профессионалу. После подключения генератора проводятся предварительные испытания. Устраняются неполадки и недостатки (если они обнаружены). Самодельный ротор будет служить дополнительным источником энергии.

  • Искусственное торнадо вращает ветрогенератор
  • По технологии автомата Калашникова
  • Новости ветроэнергетики от 16.04.2016
  • Как сделать вертикальный ветрогенератор своими руками

Вам нужно войти, чтобы оставить комментарий.

Вертикальный ветрогенератор

Пост опубликован: 12 апреля, 2017

Вертикальный ветровой генератор – это техническое устройство служащее для преобразования энергии ветра в электрическую энергию с вертикально установленной осью вращения.

Принцип действия ветрового генератора

Работа ветрового генератора основана на преобразовании кинетической энергии ветра, во вращательную энергию передаточного механизма (лопасти-редуктор-передаточный вал) и далее, во вращательную энергию вала электрического генератора.

Продолжение темы: Вертикальный ветрогенератор 2

Во время вращения в обмотках генератора вырабатывается переменный электрический ток. Выработанный электрический ток подается на контроллер, преобразуется и накапливается в аккумуляторных батареях. С батарей аккумуляторов электрический ток поступает на инвертор, на которым преобразуется и поступает в электрическую сеть для использования.

Составляющие ветрового генератора:

  1. Лопасти – служат для улавливания потоков ветра, который приводит их во вращательное движение;
  2. Редуктор – служит для преобразования мало оборотистой скорости вращения лопастей в более высокую, позволяющую вырабатывать электрический ток;
  3. Генератор – преобразует кинетическую энергию в электрическую;
  4. Защитный кожух – элемент защиты технического устройства от источника посторонних воздействий;
  5. Хвостовик — предназначен для обеспечения направленности лопастей в соответствии с направлением ветра;
  6. Контроллер – служит для преобразования переменного тока в постоянный;
  7. Аккумуляторная батарея – предназначена для накопления выработанной электрической энергии;
  8. Инвертор – преобразует постоянный электрический ток в переменный.

Ветрогенератор с вертикальной осью вращения

В ветряных генераторах данного вида вращающаяся ось генератора расположена вертикально по отношению к поверхности земли.

За годы использования устройств данного вида появились разнообразные конструкции которые объединены в группы, это:

  • С ротором Дарье — агрегаты оснащаются двумя или тремя лопастями, изогнутыми в форме овала.

К положительным особенностям данной конструкции можно отнести:

  • Самостоятельную ориентацию по отношению к воздушным потокам;
  • Удобное обслуживание установки.
  • Простота схемы агрегата.

К отрицательным относятся:

  • Нет возможности в самостоятельной раскрутке лопастей;
  • Значительная нагрузка на элементы конструкции;
  • Лопасти должны быть идентичны и соответствовать заданному профилю;
  • Повышенный уровень шума в процессе работы.
  • С ротором Савониуса – агрегаты оснащены лопастями в виде цилиндрических поверхностей.

В комментариях прикрикриплен Прайс лист чисто для ознакомления с разновидность турбин Маглева,и дополнительную полезную информацию:

Характеристики ротора Дарье

Разработка ветрогенератора с вертикальной осью

Достоинствами данной группы являются:

  • Для запуска в работу требуются незначительные потоки ветра;
  • Способность быстрого набора крутящего момента;
  • Надёжность конструкции;
  • Низкая стоимость.

К недостаткам можно отнести:

  • Низкий КПД устройств этой группы.

Устройства с ротором Савониуса применяют при монтаже комбинированных ветровых генераторов, их используют для разгона агрегатов с ротором Дарье.

  • С вертикально-осевой конструкций ротора — у агрегатов этой группы лопасти напоминают форму крыла самолета и расположены вертикально, ось ротора расположена параллельна валу.


По внешнему виду агрегаты данной группы похожи на устройства с ротором Дарье.

К положительным качествам устройств относятся:

  1. Простота в изготовлении;
  2. Способность быстрого набора скорости вращения;
  3. Низкий уровень шума.
  4. Надежность в работе.
  5. С геликоидным ротором – агрегаты этой группы являются более развитым вариантом устройств с вертикально-осевым ротором. Лопасти имеют форму геликоидной кривой.
  1. Более низкие нагрузки на элементы конструкции;
  2. Быстрый набор скорости вращения.
  • Повышенный уровень шума;
  • Высокая стоимость.
  • Многолопастный ротор – в основу агрегатов этого типа положена вертикально-осевая конструкция с устройством дополнительного внешнего кольца неподвижных лопастей.

Достоинства агрегатов данной группы:

  • Более высокий КПД установок;
  • Чувствительность к потокам ветра.
  • Высокая стоимость;
  • Повышенный уровень шума.

Популярные модели

Прежде чем рассмотреть популярные модели ветровых генераторов, необходимо определиться с критериями выбора этих устройств, такими являются:

  1. Электрическая мощность агрегата;
  2. Количество вырабатываемой электрической энергией в месяц;
  3. Минимальная скорость воздушного потока;
  4. Условия эксплуатации;
  5. Система защиты от перегрузок;
  6. Срок службы;
  7. Стоимость.

В настоящее время ветровые генераторы выпускаются как в нашей стране, так и за ее пределами.

В России подобные агрегаты выпускают: ООО «СКБ Искра», ООО «ГРЦ-Вертикаль», ЗАО «Ветроэнергетическая компания», ЛМВ «Ветроэнергетика», ЗАО «Агрегат-Привод», и еще несколько компаний.

Наиболее известными зарубежными производителями ветровых генераторов являются немецкие, датские, бельгийский и китайские компании.

Наиболее востребованы и надежны в эксплуатации ветровые генераторы выпускаемые фирмой Blue Planet Wind (Бельгия) и «Guangzhou Sunning Windpower Generator Co., Ltd.» (Китай).

В линейке выпускаемых ветровых генераторов EnergyWind компании Blue Planet Wind присутствуют модели различной мощности от 1,0 до 10,0 кВт, которые отличаются по стоимости и комплектности оборудования.

В линейке китайской компании представлены ветровые генераторы мощность от 0,6 кВт до 5,0 кВт, различные по конструкции и вариантам монтажа.

Российские вертикальные ветровые генераторы

Российские компании выпускают вертикальные ветровые генераторы различной мощности и типов ротора.

OOO «ГРЦ-Вертикаль» (Челябинская обл., г. Миасс) выпускает ветрогенераторы вертикального типа мощностью от 1,5 до 30 кВт, рассмотрим некоторые из них:

  1. Ветроустановка ВЭУ-1.5 мощностью 1,5 кВт.

Портативная установка, может транспортироваться любым видом транспорта, проста в монтаже и эксплуатации.

Технические характеристики:

Номинальная мощность – 1,5 кВт;

Выходное напряжение — 48 В;

Рабочий диапазон скоростей ветра — от 2,5 до 25 м/с;

Номинальная скорость ветра 10,0 м/с;

Диаметр ротора 2,8 м;

Температура при эксплуатации — от -50 до +50ºС;

Срок эксплуатации — 20 лет;

Межремонтный цикл — 5 лет;

Масса установки — 75,0 кг;

Стоимость установки – от 100000,00 рублей.

  1. Ветроустановка ВЭУ-3(6), 6-и лопастная, мощностью 3,0 кВт.

Предназначена для автономного электроснабжения потребителей малой мощности (жилой дом, коттедж). Преимущества – удобство и простота монтажа, при установке дополнительного оборудования (аккумуляторов и инвертора), возможно увеличение мощности установки до 6,0 кВт.

  • Номинальная мощность – 3,0 кВт;
  • Выходное напряжение — 48 В;
  • Рабочий диапазон скоростей ветра — от 4 до 30 м/с;
  • Номинальная скорость ветра 10,4 м/с;
  • Диаметр ротора 3,4 м;
  • Высота ротора 4,2 м;
  • Число лопастей — 6 шт.;
  • Частота вращения ротора – от 60 до 180 об/мин;
  • Температура при эксплуатации — от -50 до +50ºС;
  • Срок эксплуатации — 20 лет;
  • Межремонтный цикл — 5 лет;
  • Масса установки — 620 кг;
  • Стоимость установки – от 300000,00 рублей.
  1. Ветроустановка ВЭУ-30 мощностью 30 кВт.

Предназначена для электроснабжения большого дома, либо группы домов.

  • Номинальная мощность – 30,0 кВт;
  • Выходное напряжение – 96 — 400 В;
  • Рабочий диапазон скоростей ветра — от 4 до 60 м/с;
  • Номинальная скорость ветра 10,4 м/с;
  • Диаметр ротора 9,2 м;
  • Высота ротора 12,0 м;
  • Число лопастей — 6 шт.;
  • Частота вращения ротора – от 25 до 65 об/мин;
  • Температура при эксплуатации — от -50 до +40ºС;
  • Срок эксплуатации — 20 лет;
  • Межремонтный цикл — 5 лет;
  • Масса установки — 5100 кг;
  • Стоимость установки – от 1250000,00 рублей.

Как сделать своими руками

Ветряк подобной конструкции не составит труда изготовить человеку умеющему работать с ручным инструментом и немного разбирающимся в электротехнике.

Для изготовления понадобится:

  • Листовой металл (любой, толщиной 0,8– 0,9 мм) – для изготовления лопастей;
  • Сталь полосовая 40х40 мм (либо другого сечения);
  • Труба стальная, диаметром 25 мм;
  • Автомобильная полуось (марка авто не принципиальна) с подшипниками в комплекте;
  • Стальной уголок (профиль);
  • Шкивы разных диаметров – 2 шт.
  • Автомобильный генератор.

Из листового металла изготавливаются 4 лопасти габаритными размерами 1000х800 мм, которые скрепляются между собой полосовой сталью в форме барабана (лопасти направлены от центра круга по радиусам к наружному диаметру). Из стальной трубы делается мачта, которая с одной стороны закрепляется на автомобильной полуоси, а со второй стороны на нее крепятся собранные в виде барабана лопасти. Полуось, с соответствующими ей подшипниками, крепится на металлической опорной конструкции, которая изготавливается произвольной формы и из имеющихся материалов.

Два основных условия при изготовлении металлической конструкции, это:

  • Устойчивость при ветровых нагрузках;
  • Плотная посадка подшипников полуоси.

Для увеличения числа оборотов можно применить ременную передачу, установив на нижнюю полуось шкив большего диаметра, а на генератор меньшего. Генератор можно подобрать автомобильный.

Плюсы и минусы

К положительным свойствам ветровых генераторов с вертикальной осью вращения можно отнести:

  1. Способность работать вне зависимости от направления ветра;
  2. Продолжительные срок эксплуатации;
  3. Удобство в обслуживании и эксплуатации;
  4. Простота конструкции, позволяющая собрать из подручных материалов;
  5. Способность выдерживать значительные внешние нагрузки.

К отрицательным свойствам относятся:

  • Металлоемкость конструкций и как следствие значительный вес;
  • Низкий КПД установок;
  • Высокий уровень шума.

Приведенные «плюсы» и «минусы» использования ветровых генераторов данного вида определяет выбор потенциальных потребителей «зеленой» энергетики, которых с каждым годом становится все больше и больше.

Вероятно, Вам также понравятся следующие материалы:

Спасибо, что дочитали до конца!

Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Следите за нами в твиттере: https://twitter.com/Alter2201

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Ротор Дарье

Сведения о роторе

Ротор Дарье – это механизм для оснащения вертикальных ветрогенераторов. Техническое устройство функционирует за счет силы подъема. Состоит из двух или более крыльев, симметрично расположенных относительно друг друга. Сами крылья выполнены из упругой ленты без использования профиля.

Конструкция отличается простотой монтажа и изготовления. Изобретение устройства было выполнено в 31 году прошлого столетия.

Сегодня имеется принцип работы механизма, но отсутствует модель изготовления, в том числе последовательность проведения работ. Все же, имея минимальные технические знания, ротор Дарье можно сконструировать своими руками.

О принципе работы механизма

Разность показаний аэродинамических нагрузок обеспечивает вращение подвижных частей ротора. После образования циркуляции механизм становится быстроходным.

Описание принципа работы:

  1. По отдельности на каждую лопасть воздействует сила подъема относительно потока ветра. Параметры этой силы зависят от угла, образованного величиной скорости потока и лопасти.
  2. Образующийся момент силы имеет переменный характер, а не постоянный, по этой причине существует цикличность изменений, связанных с движением крыльев. Поэтому, чтобы подъемная сила была создана, необходимо обеспечить постоянное движение лопастей и учитывать это при проектировании большего количества лопастей.

Чтобы произвести запуск установки, необходимо приложить много усилий.

Изготовление ротора в домашних условиях

Ротор Дарье имеет несложную конструкцию. Чтобы его изготовить, необязательно владеть специальными знаниями и опытом. Для выполнения ротора для ветряка своими руками необходимо:

  1. Выполнить чертеж.
  2. Подготовить материалы: лопасти, генератор, мачту для установки, крепежи. Каждую часть можно приобрести в магазине, а можно изготовить из подручных средств. К примеру, для изготовления лопастей можно использовать обрезки от труб из ПВХ.
  3. Приступить к непосредственному изготовлению механизма. Из подготовленных труб определенного размера вырезать предполагаемые лопасти, при этом не забыть просверлить отверстия для выполнения крепежа. Каждую отдельную деталь необходимо ошкурить, чтобы не было травмирования. Крепеж производить на болтовые соединения. Если будет использоваться для этих целей лента, то следует ее нарезать в размер.
  4. Затем мачту установить на ранее подготовленное основание.
  5. Для подключения электричества необходимо изучить элементарные основы электротехники.
  6. Проводить предварительные испытания, начиная с небольших оборотов создаваемого крутящего момента.
  7. При возникновении непредвиденных обстоятельств, в том числе разрыве ленты, следует остановить работу и устранить недостатки.

Ротор Дарье представляет собой систему одновременно функционирующих нескольких лопастей. Хотя его несложно изготовить, но получить от него необходимое количество электроэнергии не получится, потому что конструкция требует дополнительных усовершенствований.

Преимущества устройства

Достоинствами ротора можно называть следующие характеризующие его моменты:

  1. Турбины, оснащенные этим ротором, не нуждаются в дополнительной установке ориентационных устройств, а это в положительную сторону сказывается на его стоимости.
  2. Даже при небольшой скорости ветра механизм является быстроходным.
  3. Коэффициент использования энергии от ветровых нагрузок высокий.

Ротор Дарье можно изготовить самостоятельно, а можно приобрести в магазине, при этом цена приемлема.

Недостатки конструкции

К недоработкам технического устройства, применяемого для вертикальных ветряков, можно отнести:

  1. Во время работы на ротор воздействуют сильные ветровые нагрузки.
  2. Нет возможности усовершенствования модели из-за отсутствия шаблона.
  3. Расположение крутящего момента на периферии, что способствует возникновению мощных центробежных сил, которые приводят к изнашиванию механизмов. Для уменьшения массы ротора и побочного воздействия на него лопасти изготавливаются кривыми.
  4. Повышенный уровень шума. При очень сильных воздушных потоках возникает сильный шум, переходящий в визг, а уровень вибрации может привести к разрыву ленты лопасти.

Ротор Дарье

Ротор Дарье, турбина Дарье (Darrieus rotor) — тип турбины низкого давления, ось вращения которой перпендикулярна потоку жидкой или газовой среды. Предложена в 1931 году французским авиаконструктором Жоржем Дарье. Ротор Дарье нашёл широкое применение в ветроэнергетике.

Устройство и принцип действия

Ротор Дарье представляет собой симметричную конструкцию, состоящую из двух и более аэродинамических крыльев, закреплённых на радиальных балках. На каждое из крыльев, движущихся относительно потока действует подъёмная сила, величина которой зависит от угла между вектором скорости потока и мгновенной скорости крыла. Максимального значения подъёмная сила достигает при ортогональности данных векторов. Ввиду того, что вектор мгновенной скорости крыла циклически изменяется в процессе вращения ротора, момент силы, развиваемый ротором также является переменным. Поскольку для возникновения подъёмной силы необходимо движение крыльев, ротор Дарье характеризуется плохим самозапуском. Самозапуск улучшается в случае применения трёх и более лопастей.

Преимущества и недостатки

Работа ротора Дарье не зависит от направления потока. Следовательно турбина на его основе не требует устройства ориентации. Ротор Дарье характеризуется высоким коэффициентом быстроходности при малых скоростях потока и высоким коэффициентом использования энергии потока: площадь ометаемая крыльями ротора может быть выполнена достаточно большой.

К недостаткам ротора Дарье относится плохой самозапуск, низкая механическая прочность, повышенный шум, создаваемый при работе.

Постоянного тока • Переменного тока • Трёхфазные • Двухфазные • Однофазные • Универсальные
Асинхронные Конденсаторный двигатель
Синхронные Бесколлекторные • Коллекторные • Вентильные реактивные • Шаговые
Другие Линейные • Гистерезисные • Униполярные • Ультразвуковые • Мендосинский мотор

Wikimedia Foundation . 2010 .

  • Ротор, Артуро
  • Роторно-фрезерный движитель

Смотреть что такое «Ротор Дарье» в других словарях:

Ротор — Роторный экскаватор как экспонат в бывшем угольном карьере «стальном городе» Феррополис (Германия), превращенном в музей под открытым небом Ротор от лат. roto ) вращаться В математике: Ротор то же, что вихрь векторного поля, то… … Википедия

Турбина Уэльса — Принцип работы лопаток турбины Турбина Уэльса (Уэллса) (англ. Wells turbine) воздушная турбина низкого давления имеющая симметричную аэродинамическую поверхность лопаток, позволяющую им … Википедия

Асинхронная машина — Статор и ротор асинхронной машины 0.75 кВт, 1420 об/мин, 50 Гц, 230 400 В, 3.4 2.0 A Асинхронная машина это электрическая машина переменного тока … Википедия

Бесколлекторный электродвигатель — Принцип работы трёхфазного вентильного двигателя Вентильный электродвигатель это синхронный двигатель, основанный на принципе частотного регулирования с самосинхронизацией, суть которого заключается в управлении вектором магнитного поля… … Википедия

Электрический двигатель — Основная статья: Электрическая машина Электродвигатели разной мощности (750 Вт, 25 Вт, к CD плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения Электрический двигатель … Википедия

Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, ма … Википедия

Линейный двигатель — Лабораторный синхронный линейный двигатель. На заднем плане статор ряд индукционных катушек, на переднем плане подвижный вторичный элемент, содержащий постоянный магнит … Википедия

Шаговый электродвигатель — Шаговый электродвигатель это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные… … Википедия

Коллекторный электродвигатель — Коллекторный электродвигатель синхронная[1] электрическая машина, в которой датчиком положения ротора и пере­к­лю­ча­те­лем тока в обмотках является одно и то же устройство щёточно коллекторный узел … Википедия

Лопатка (лопасть) — У этого термина существуют и другие значения, см. Лопатка (значения). Турбинная лопатка Лопатка (лопасть) деталь лопаточных ма … Википедия

Ротор дарье конструкция принцип работы

Войти

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

  • Recent Entries
  • Archive
  • Friends
  • Profile
  • Memories

Prototype this по-русски — выпуск десятый. Автостарт для ротора Дарье.

В условиях глобального потепления использование альтернативных источников энергии является не только способом сократить вредные выбросы в атмосферу, но также методом, который позволяет использовать энергию разбушевавшейся атмосферы «в мирных целях». Поскольку изменения климата приводят, в числе прочего, к расширению зон сильных ветров — территории, на которых могут быть эффективно использованы ветрогенераторы, становятся все более обширными, а это делает ветроэнергетику все более привлекательной.

На сегодня существует два больших класса ветрогенераторов — быстроходные и медленноходные.

К медленноходным ветрогенераторам относятся всевозможные вариации на тему Савониуса — собственно сам Савониус:

Также к медленноходным относится лопастной ветряк типа «American Multiblade»:

и парусные ветряки

Преимущество медленноходных ветряков заключается в том, что они работаею не за счет скорости потока, а за счет его напора. Это позволяет им стартовать при гораздо более низких скоростях ветра, однако означает низкую скорость вращения вала отбора мощности, а значит — необходимость редуктора либо генератора специальной конструкции (многополюсный малооборотный).

Кроме того, с повышением скорости ветра очень быстро наступает момент, когда напор превышает прочность, и ветряк разрушается.

Быстроходные конструкции представлены классическими пропеллерными ветряками с малым числом лопастей

И ротором Дарье:

Преимущество быстроходных роторов заключаются в том, что они работают не от напора, а от скорости потока, при этом скорость движения лопасти в них превышает скорость самого потока, так как ротор разгоняется не под действием напора, а под действием аэродинамических сил, возникающих при обтекании лопасти потоком. Это позволяет уменьшить потери на передачу энергии на генератор, а также использовать более простые (а значит, гораздо более дешевые) генераторы. Кроме того, поскольку быстроходные генераторы отбирают энергию не с поверхности, а с ометаемой площади, они в разы легче медленноходных, а значит — потенциально дешевле.

У быстроходных генераторов существует только одна проблема — они очень плохо стартуют. Поскольку в неподвижном состоянии при обтекании лопастей потоком они отбирают энергию не с ометаемой площади, а с площади лопасти, и поскольку обтекание в этом случае происходит не в рабочем режиме (когда лопасть набегает на потом), а в форс-мажорном (когда поток набегает на лопасть, да еще и под неправильным углом) — энергии потока недостаточно для запуска такого генератора. А один из лучших вариантов — ротор Дарье — вообще сам не стартует, что приводит к монстрообразным конструкциям вроде:

где неправильная аэродинамическая форма лопасти приводит к падению КПД на рабочем режиме аж на 5% (зато есть автостарт) или

где в конструкцию введено центральное тело, повышающее сопротивление потоку.

В результате в процессе старта получается ситуация, в которой ветряк не может запуститься при той скорости ветра, на которой, набрав обороты, он уверенно может работать и давать мощность.

Заметим, что American Multiblade и геликоидный ротор достаточно сложны в производстве, первый — из-за большого количества лопастей и необходимости обеспечить аэродинамическую чистоту ротора при одновременных прочностных требованиях (все-таки от напора работаем, и нагрузки велики), второй — из-за сложной аэродинамической формы лопастей. Наболее просты в производстве Савониус, Угринский и Ленц, а также пропеллерный быстроход (теперь понятно, почему именно их используют в промышленных ВЭС?) и Дарье.

Если отвлечься от больших динамических нагрузок, испытываемых при работе ротором Дарье, его можно признать самой лучшей конструкцией, и вот почему:

1. Он быстроходен, а значит — способен работать с дешевыми электрогенераторами, дешевой механикой.
2. Стартовый режим Дарье крайне затруднен, в силу малой площади лопастей. А это значит, что будучи остановлен и поставлен на тормоз, он не станет сам раскручиваться во время слишком сильного ветра, а аэродинамические нагрузки на лопасти не будут чрезмерно высоки.
3. На единицу массы он ометает большую площадь, а значит в рабочем режиме имеет большую отдачу по мощности.
4. Ему не требуются механизмы поворота (как классическому «пропеллеру») и управления шагом (как на мощных пропеллерах) лопасти.

Можно ли усовершенствовать ротор Дарье таким образом, чтобы обеспечить нормальный автостарт без усложнения конструкции? Очевидное решение, а именно, объединение на одной оси Савониуса и Дарье, имеет ряд минусов. Конечно, напорный режим Савониуса способен начать раскрутку Дарье, что значительно уменьшает скорость ветра, при которой Дарье стартует. Однако при достижении быстроходности 1, когда Дарье начинает выходить на рабочий режим, Савониус начинает опережать поток, что приводит к торможению Дарье, а значит — снижению КПД всей связки. Кроме того, торможение Дарье роторов Савониуса приводит к повышению того порога скорости ветра, на котором Дарье начинает работать устойчиво, а значит — к ухудшению характеристик Дарье по рабочей скорости ветра.

Естественным решением является установка Савониуса (а еще лучше — Угринского) на одной оси с Дарье через муфту обратного хода, как передача звездочки на ведушем колесе велосипеда. В режиме старта Угринский (Савониус) передает момент на Дарье, раскручивая его. Как только Дарье начинает «брать» ветер, он обгоняет свой «стартер» и выходит на режим с максимальным КПД. А Савониус продолжает свое неспешное «эстонское» вращение.

Поскольку одним из преимуществ Дарье является отсутствие автостарта на тормозе от сильного ветра, что позволяет уберечь ветряк от аварии, муфта обратного хода должна передавать момент через разобщаемый вручную (или от привода по команде — это зависит от размера ветряка) фрикцион. Когда Дарье не нужен, фрикцион разобщается и автостарт отключается.

Учитывая тот факт, что Савониус не участвует в выработке энергии, а служит исключительно в качестве стартера, его размеры, а значит действующая на него ветровая нагрузка — существенно меньше рабочих для ветряка, что позволяет исполнить его достаточно прочным для того, чтобы противостоять ветровой нагрузке от слишком сильного ветра.

Заметим, что предлагаемое решение, в отличие от неполной лопасти или системы с центральным телом, обеспечивает управляемый автостарт. И хотя система

Выглядит наиболее простой и эффективной с точки зрения реализации автостарта Дарье, ее более низкий КПД в сумме с неуправляемым самозапуском делают ее неприменимой для ветряков большой мощности.

Анализ плюсов и минусов вертикальных ветрогенераторов малой мощности

Первые промышленные ВЭУ были сконструированы в Дании в 1890 году. Вертикально-осевые ВЭУ были изобретены позже горизонтально-осевых пропеллерных (ротор Савониуса — в 1929 г., ротор Дарье был запатентован во Франции в 1925 г. и в США в 1926 г.) [1]. До недавнего времени главным недостатком вертикально-осевых ветроэнергетических установок (ветрогенераторов) ошибочно считалась невозможность получить быстроходность больше единицы (для горизонтально-осевых пропеллерных ВЭУ быстроходность может быть больше пяти). К недостаткам также относили неравномерность крутящего момента, зависимость частоты вращения ветроколеса от скорости ветра и большую пусковую скорость ветра (около 15 м/с) [2].

Эти положения, верные только для тихоходных роторов с различным сопротивлением лопастей движению, привели к неправильным теоретическим выводам о малом коэффициенте использования энергии ветра (КИЭВ) у вертикально-осевых ветроэнергетических установок по сравнению с горизонтально-осевыми ветроустановками. В результате этот тип ветроэнергетических установок почти 40 лет вообще не разрабатывался.

И только в 60-х – 70-х годах прошлого века сначала канадскими, а затем американскими и английскими специалистами было экспериментально доказано, что эти выводы неприменимы к роторам Дарье, использующим подъемную силу лопастей. Быстроходность этих роторов достигает 6:1 и выше, а коэффициент использования энергии ветра уже в настоящее время на уровне горизонтально-осевых пропеллерных ВЭУ [2]. Вместе с тем, эксплуатация горизонтально-осевых ветроустановок выявила ряд неучитываемых ранее недостатков. Например, горизонтально-осевые ветроэнергетические установки могут значительно уменьшать вырабатываемую электроэнергию при частой смене направления ветра [3]. При быстром изменении направления ветра, ветроколесо должно четко отслеживать эти изменения, но практически невозможно эффективно ориентировать ветроколесо при изменении направления ветра из-за запаздывания действия механизмов ориентации.

Ветроэнергетические установки с горизонтальной осью вращения обеспечивают стабильную мощность, снимаемую с ветроколеса, при скорости ветра не меньше номинальной. Однако практика использования автономных электростанций показывает, что реально вырабатываемая электроэнергия оказывается меньше расчетной, потери энергии могут достигать 50% [3]. Причиной этого является уменьшение мощности, а соответственно и энергии, передаваемой ветроколесом при изменении направления ветра даже при достаточной его скорости.

Скорость ветра 5,5м/с, радиус ветроколеса 1м.

Зависимость мощности, снимаемой с ветроколеса от времени при однократном изменении направления ветра на 30о

То есть, ветроколесо не может мгновенно переориентироваться на новое (изменившееся) направление ветра, и за период переориентации мощность, снимаемая с ветроколеса, уменьшается. При частой смене направления ветра вертикально-осевые ветроэнергетические установки оказываются эффективнее горизонтально-осевых ветроустановок несмотря на то, что имеют несколько меньший коэффициент использования мощности ветра [3].

Ветроколесо с вертикальной осью вращения вследствие своей геометрии при любом направлении ветра находятся в рабочем положении. Эффективность их работы принципиально не зависит от направления ветра, в связи с чем, нет необходимость в механизмах и системах ориентации на ветер.

Теоретически доказано, что коэффициент использования энергии ветра идеального ветроколеса горизонтальных пропеллерных и вертикально-осевых установок равен 0.593. К настоящему времени максимально достигнутый на горизонтальных пропеллерных ветроэнергетических установках коэффициент использования энергии ветра составляет 0.48. Проведенные экспериментальные исследования российских вертикально-осевых установок показали, что достижение значения 0.4 – 0.45 вполне реальная задача. Таким образом, коэффициенты использования энергии ветра горизонтально-осевых пропеллерных и вертикально-осевых ветроэнергетических установок близки.

Достоинством вертикально-осевых ветроэнергетических установок является возможность размещения генератора на фундаменте установки. Это позволяет отказаться от мощной, вероятнее всего многоступенчатой, угловой передачи крутящего момента, упростив требования к монтажепригодности оборудования (исключить ограничения по габариту и массе) и к условиям эксплуатации (отсутствие толчков и вибраций). Упрощается передача вырабатываемой электроэнергии.

В горизонтально-осевых пропеллерных ветроэнергетических установках избегают вводить угловую передачу и размещают оборудование во вращающейся гондоле. При таком расположении значительные трудности вызывает передача электроэнергия от вращающегося вместе с гондолой генератора. Для того чтобы избежать скручивания силовой шины, необходимо ограничивать поворот гондолы, вводить коллекторную передачу либо отсоединять и раскручивать шину. Во всех этих случаях в конструкцию ветроустановки вводятся дополнительные устройства, усложняющие ее.

Передача крутящего момента на уровень фундамента связана с введением длинного трансмиссионного вала, однако обусловленное этим усложнение конструкции вполне компенсируется преимуществами нижнего размещения оборудования, даже в том случае, если вал будет послередукторным, то есть, быстроходным. При доредукторном (тихоходном) исполнении длинный вал особых конструктивных усложнений не требует.

В горизонтальных пропеллерных ветроэнергетических установках удачно используются достижения авиационной техники, в частности в области проектирования лопастей, систем управления углами их установки, трансмиссий. Следовательно, есть все основания полагать, что эти установки достаточно отработаны и их надежности могут быть даны высокие оценки. Тем не менее, очевидно, что после отработки конструкции, вертикально-осевые ветроэнергетические установки обещают более высокую надежность. Это обусловлено отсутствием механизмов и систем управления поворотом гондолы на ветер, размещением генератора на фундаменте, отсутствием необходимости в устройствах и системах управления углом установки лопастей, упрощенной системой передачи электроэнергии, возможностью крепления лопастей к ротору в нескольких местах, что снижает требования по прочности и жесткости лопасти.

Вертикально-осевые ветроэнергетические установки с точки зрения воздействия на окружающую среду имеют следующие преимущества перед быстроходными горизонтальными пропеллерными:

— уровни аэродинамических, инфразвуковых шумов, теле- и радиопомехи гораздо ниже; — меньше радиус разброса обломков лопастей в случае их разрушения и менее вероятно саморазрушение; — ниже вероятность столкновения лопастей с птицами.

Вертикально-осевые ветроэнергетические установки наиболее эффективны при малой (до 10кВт) мощности, что совпадает с концепцией автономных и резервных систем энергоснабжения. Рассмотрим наиболее совершенные типы вертикально-осевых ветроустановок.

Ротор Савониуса. Вращающий момент воз­никает при обтекании ротора Савониуса потоком воздуха за счет разного сопротивления выпуклой и вогнутой частей ротора Савониуса. Достоинствами ветроэнергетической установки этого типа являются низкий уровень шума, небольшая занимаемая площадь, отличная работа на малых ветрах (3-5 м/сек). Ветроколесо отличается исключительной простотой, однако затраты на материалы пропорциональны КПД. Эта турбина являются самой тихоходной, и как следствие, имеет очень низкий коэффициент использования энергии ветра – всего 0,18 — 0,24 и КПД 17-18%. Применение этих турбин экономически и технически нецелесообразно.

Ротор Горлова . Ротор состоит из нескольких лопастей аэродинамического профиля. Турбина является быстроходной, коэффициент быстроходности более 3, КПД более 38%. Изготовление таких лопастей затруднительно в связи со сложной формой лопастей. Турбина Горлова отличается повышенным уровнем шума и инфразвука частотой 4-8 Гц, который образуется за счет наклона лопастей и срыва потока с концов лопастей. Применение этих турбин экономически и технически нецелесообразно.

Ротор Дарье . Представляет собой симметричную конструкцию, состоящую из двух и более аэродинамических крыльев, закрепленных на радиальных балках. На каждое из крыльев, движущихся относительно потока, действует подъемная сила, величина которой зависит от угла между векторами скорости потока и мгновенной скорости крыла. Максимального значения подъемная сила достигает при ортогональности данных векторов. Ввиду того, что вектор мгновенной скорости крыла циклически изменяется в процессе вращения ротора, момент силы, развиваемый ротором, также является переменным. Поскольку для возникновения подъемной силы необходимо движение крыльев, ротор Дарье характеризуется плохим самозапуском. Самозапуск улучшается в случае применения трех и более лопастей, но и в этом случае требуется предварительный разгон ротора.

Ротор Дарье относится к ветроприемным устройствам, использующим подъемную силу, которая возникает на выгнутых лопастях, имеющих в поперечном сечении профиль крыла. Ротор имеет сравнительно небольшой начальный момент, но большую быстроходность, в силу этого – относительно большую удельную мощность, отнесенную к его массе или стоимости.

Работа ротора Дарье не зависит от направления потока. Следовательно, турбина на его основе не требует устройства ориентации. Ротор Дарье характеризуется высоким коэффициентом быстроходности при малых скоростях потока и высоким коэффициентом использования энергии потока, а площадь, ометаемая крыльями ротора, может быть достаточно большой.

К недостаткам ротора Дарье также относится низкая механическая прочность и повышенный шум, создаваемый при работе.

Наиболее технологичным является Н-образный ротор Дарье . Установка такого типа является быстроходной (коэффициент быстроходности ≥ 3), КПД достигает 0,38. Ротор Н-Дарье отличается пониженным уровнем шума и полным отсутствием инфразвука. Ветроэнергетическая установка этого типа имеет простую конструкцию и высокую надежность.

Таким образом, вертикально-осевые ветроустановки являются более простыми и обладают еще рядом преимуществ перед горизонтально-осевыми ветроустановками. Меньший коэффициент использования мощности ветра и КПД компенсируются отсутствием потерь энергии при изменении направления ветра. В случае буферного аккумулирования электроэнергии, можно снизить требования к качеству выходного напряжения и применить упрощенные конструктивные решения преобразования ветрового потока в механическую энергию вращения вала (например, нерегулируемые лопасти и т.п.). При этом требуемое качество электроэнергии в канале электроснабжения может быть обеспечено стандартными устройствами преобразования электрической энергии (например, источниками бесперебойного питания типа UPS) с аккумуляторной батареей соответствующей емкости.

Аспирантка Бабина Л.В., д.т.н. Воронин С.М. ФБГОУ ВПО «Азово-Черноморская государственная агроинженерная академия», Россия

Литература

1. Дж. Твайделл, А. Уэйр. Возобновляемые источники энергии: Пер. с англ. М.: Энергоатомиздат, 1990 2. Соломин Е.В.Ветроэнергетические установки ГРЦ-Вертикаль // Альтернативная энергетика и экология, 2010 № 1.С. 10-15 3. Воронин С.М., Бабина Л.В. Работа ветроустановки при изменении направления ветра // Альтернативная энергетика и экология, 2010 № 1. С. 98-100 4. Беляков П. Ю., Доильницын В.В., Гончаров В.Н., Сапронов Н.В. Математическое моделирование ветроэнергетической установки с ротором циклоидного типа // Прикладные задачи электромеханики, энергетики, электроники: Труды межвузовской студенческой научно-технической конференции; Воронежский государственный технический университет. Воронеж, 2001.