Для чего нужен секционный выключатель?

Для чего нужны выключатели-разъединители

Краткий обзор функционала продукции серии Compact INS/INV от Schneider Electric

Для чего нужны выключатели-разъединители? Данный коммутационный аппарат, прежде всего, предназначен для коммутации номинальных токов в ручном режиме. Главное отличие выключателей-разъединителей от автоматических выключателей в том, что они не осуществляют защиту цепей от аварийных режимов работы – перегрузки и короткого замыкания. Какие функции еще выполняет данные коммутационные аппараты?

В данной статье кратко охарактеризуем выключатели-разъединители на примере электрических аппаратов серии Compact INS/INV известного производителя Schneider Electric.

Основными преимуществами выключателей данного типа является простота конструкции, широкая область применения, соответствие международным стандартам, а также возможность расширения функционала посредством установки различных дополнительных устройств. При этом огромным преимуществом является то, что обеспечивается полная безопасность персонала при эксплуатации данных электротехнических устройств.

Коммутационные аппараты рассматриваемой серии могут иметь несколько вариантов исполнения:

Compact INS – коммутационный аппарат, в котором создается гарантированный разрыв контактов. При отключении данного выключателя-разъединителя нет возможности наглядно увидеть разрыв контактов. Гарантированное разъединение – такая особенность конструкции механического устройства, при которой положение управляющей рукоятки соответствует фактическому положению контактов коммутационного аппарата;

Compact INV — выключатель-разъединитель, в котором создается видимый разрыв при отключении. На корпусе данного аппарата имеется прозрачный экран, через который можно наглядно видеть разрыв всех контактов. Помимо этого в электрическом аппарате реализована функция гарантированного разъединения, что в совокупности с видимым разрывом обеспечивает двойную безопасность персонала, эксплуатирующего электрический щит с данными электрическими аппаратами;

Compact INS и Compact INV аварийного (экстренного) отключения – по характеристикам ни чем не отличаются от двух предыдущих выключателей-разъединителей. Единственное различие в специальной цветовой раскраске: желтый цвет лицевой части корпуса и красная рукоятка – для легкости обнаружения обслуживающим персоналом в случае необходимости экстренного отключения нагрузки.

Где применяются выключатели-разъединители?

Благодаря многофункциональности и очень широкому диапазону номинальных токов — от 40 А до 2500 А выключатели-разъединители серии Compact INS/INV широко применяются повсеместно в современных распределительных электрических шкафах различного назначения начиная от распределительных шкафов в бытовых помещениях, заканчивая главными распределительными шкафами постоянного тока на производственных предприятиях и в электроустановках различного назначения.

В распределительных шкафах, как переменного, так и постоянного тока, выключатели-разъединители могут выполнять различные функции.

Например, в распределительном щите переменного тока, питающегося от двух независимых источников, выключатели-разъединители устанавливаются:

на каждом из питающих вводов для реализации видимого разрыва, а также ручного отключения токов нагрузки;

на секции шин для возможности отделения определенного участка секции для удобства проведения ремонта и обслуживания;

для коммутации номинальных токов отдельных потребителей или группы потребителей;

для реализации ввода резерва от другого источника питания для одного потребителя или в качестве секционного выключателя-разъединителя для возможности включения питания группы потребителей от другой независимой секции шин.

В цепях оперативного тока электрооборудования подстанций выключатели-разъединители устанавливают между элементами оборудования для удобства отделения того или иного участка из кольца оперативного тока при поиске повреждений.

В шкафах вентиляции, обогрева оборудования, питания различных вспомогательных устройств оборудования выключатели-разъединители используются для включения питания различных устройств. С их помощью можно управлять различными мощными электропотребителями.

Дополнительные функции выключателей-разъединителей

Рассмотрим несколько дополнительных функций выключателей-разъединителей, которые реализуются посредством подключения дополнительных устройств.

1. Моноблочный расширитель полюсов — предназначен для обеспечения удобства подключения выключателя-разъединителя. Выбрав подходящий расширитель полюсов можно подключить данный коммутационный аппарат к любым шинам, проводникам, контактным пластинам, клеммам. Также можно расширить количество клемм каждой фазы для удобства подключения нескольких потребителей без необходимости установки других элементов для разветвления.

2. Индикатор напряжения — позволяет контролировать отключенное положение выключателя-разъединителя не только по положению контактов, но и визуально по отсутствию напряжения по индикатору, что, безусловно, является плюсом с точки зрения электробезопасности при обслуживании электрического щита.

Для повышения безопасности персонала при эксплуатации выключателей-разъединителей можно установить также изолирующие разделители полюсов, клеммные заглушки, а также крышки на винты. Также после отключения данного коммутационного аппарата есть возможность реализации блокировки рукоятки управления путем установки навесного замка, что позволяет выполнить требование правил безопасности – предотвращения ошибочной подачи напряжения.

3. Выносная поворотная рукоятка – упрощает процесс выполнения переключений, так как при помощи выносной рукоятки можно осуществлять коммутации выключателем-разъединителем, не открывая дверцу распределительного щита. Для коммутационного аппарата, имеющего функцию экстренного отключения – выносная рукоятка позволяет сработать персоналу максимально оперативно.

4. Блок амперметра – позволяет измерять ток нагрузки по фазам, который протекает через выключатель-разъединитель.

5. Блок трансформатора тока – предназначен для подключения различных измерительных приборов, как цифровых, так и аналоговых. Блок трансформатора тока компактный и позволяет значительно сэкономить место в распределительном щитке, а также максимально упростить процесс монтажа и подключения приборов и измерительных цепей в распределительном щите.

6. Дополнительные (вспомогательные) контакты — позволяют подключать к выключателю-разъединителю дополнительные устройства и реализовывать различные функции. Например, можно подключить устройства сигнализации, светодиоды для индикации текущего положения коммутационного аппарата, использовать дополнительные контакты для реализации логической схемы работы защитных и автоматических устройств, электрической блокировки.

Отдельно следует упомянуть о вспомогательных контактах опережающего действия. Данный контакт замыкается еще до того, как будет выполнена операция по отключению выключателя-разъединителя. Если подключить к данным контактам автоматический выключатель с возможностью дистанционного управления, то при отключении выключателя-разъединителя автоматический выключатель отключит нагрузку еще до его отключения, то есть с опережением.

Заключение

В заключении подведем итог, для чего нужны выключатели-разъединители, перечислив основные их функции:

реализация своей основной функции – коммутации номинальных токов в ручном режиме, экстренного отключения нагрузки, создания дополнительного разрыва цепи;

упрощение процесса монтажа и подключения в электрическом щите в целом благодаря использованию различных вспомогательных элементов;

реализация дополнительных функций в распределительных щитках, благодаря которым можно значительно уменьшить размер электрического щита;

обеспечение максимальной безопасности персонала при эксплуатации и обслуживании электрических щитов;

удобство выполнения оперативных переключений.

Проект РЗА

Сайт о релейной защите и цифровых технологиях в энергетике

Защиты и автоматика секционного выключателя 6(10) кВ

Для секционного выключателя (СВ) защиты практически аналогичны защитам ввода 6(10) кВ. При этом надо помнить, что в СВ сходятся сигналы присоединений обеих секций.

Например, если говорить про УРОВ, то на СВ заводятся сигналы УРОВ с каждого присоединения подстанции в то время, как на ввод только УРОВ присоединений своей секции. То же самое с сигналами ЛЗШ и дуговой защиты.

СВ 6(10) кВ — это своего рода узел, куда сводится множество защитных сигналов. Поэтому в терминале СВ должно быть достаточно дискретных входов.

Для сетей в односторонним питанием (а мы рассматриваем именно такие) СВ в нормальном режиме всегда отключен. Если срабатывает АВР, то он сначала отключает ввод потерявший питание, а потом включает СВ. Может быть и наоборот, но это больше характерно для быстродействующего АВР (БАВР), который сегодня набирает популярность.

Алгоритма АВР в терминале СВ как такового нет. Он просто выполняет команды АВР терминалов вводов, которые управляют СВ через дискретные входы.

Можно сказать, что РЗА секционного выключателя для стандартной схемы довольно простые и обычно не вызывают вопросов даже у начинающих специалистов.

Кстати, вопрос для начинающих: почему на СВ 6(10) кВ не используют токовую отсечку? Ведь на шинах ток КЗ максимальный и отключать его следует как можно быстрее. Ответы пишите в комментариях.

В следующий раз рассмотрим защиты и автоматику ТН 6(10) кВ

БЭМП РУ-СВ содержит все перечисленные в статье защиты

Отсечки на СВ не применяют, потому что вряд ли получится отстроить ее по току от отсечек отходящих линий, а так же выдержать коэффициент чувствительности в конце зоны защиты т.е. перед тт отходящей линии, если конечно сборные шины сделаны не из какой-нибудь стали )) ЛЗШ помогает быстро отключить повреждение на шинах. В сетях с напряжением 35 кВ иногда применяется ускоряющаяся отсечка на СВ, но, возможно, это только в старых схемах и в сетях 6 (10) кВ не применяется вовсе

Отсечку не отстраивают от других отсечек. Она отстраивается в основном от бросков тока намагничивания и максимального тока КЗ в конце зоны. А у СВ зона имеет нулевую длину (шины), поэтому токи КЗ в начале и конце зоны одинаковые. Таким образом, отсечку просто нельзя выбрать. А так в целом ответ правильный

Получается по току отстраивают только МТЗ. Хотя логично, зона защиты мтз одного присоединения перекрывает зону мтз другого и для надежности отстраивают ток срабатывания одной мтз от другой, с отсечкой это даже невозможно, спасибо )

Селективность МТЗ обеспечивается выдержкой времени. По току МТЗ смежных участков согласуются по чувствительности, чтобы вышестоящая защита не пустилась без пуска нижестоящей. Если интересна эта тема, то предлагаю посмотреть Курс по МТЗ — https://pro-rza.ru/kursy/videokurs-2-maksimalnaya-tokovaya-zashhi/

Соглашусь с Александром, ТО по своей сути будет не селективно работать по отношению к отходящим фидерам, что бы её сделать селективной, нужно либо увеличить ток срабатывания (уменьшить чувствительность) или сделать выдержку времени ( лишить быстродействия), таким образом встает вопрос «Зачем она нужна?». ЛЗШ и ДгЗ справятся с задачей быстрее и надежнее.

Интернет форумы — крайне вредная штука! Вопрос поставлен некорректно. Для начала нужно понимать в каком режиме работает сеть.
1. Например при работе подстанции от двух вводов и замкнутом секционном выключателе — возникает КЗ на одной из секций. В этом случае мы делим шины секционным выключателем без выдержки времени (чтобы уменьшить токи КЗ), и только потом разбираемся на какой из шин КЗ.
2. На сборных шинах генераторного напряжения — все то же самое!
3. Например при КЗ на присоединении, подключенному к шинам, отказал основной комплект РЗА вместе с УРОВ и поврежденный участок сети будет отключен последующей защитой. Блокировка местного АВР от последующей защиты невозможна ввиду её удаленности. При снижении напряжения на шинах запустится местный АВР секционным выключателем на КЗ. При включении СВ всегда работает ускорение чувствительной защиты СВ и МТЗ сработает за 0,15..0,2с. То есть с минимальной задержкой времени, необходимой для отстройки от бросков тока намагничивания трансформаторов и броска апериодической составляющей пусковых токов электродвигателей. А вот отсечка в этом случае должна работает без выдержки времени. Поскольку в этом случае нет ни какой разницы: КЗ у нас на шинах, или неотключаемое КЗ за выключателем на присоединении.
С уважением А.Л.Соловьёв

Александр Леонидович, добрый день.
Я рассматривал стандартную распределительную подстанцию 6-10 кВ с базовыми присоединениями — это у есть в первой статье цикла по защитам 6-10 кВ (https://pro-rza.ru/zashhity-tipovyh-prisoedinenij-6-10-kv/). Конечно режимы работы СВ могут быть разными, но мы рассматриваем основной случай, когда СВ разомкнут в нормальном режиме. Кольцевых режимов через СВ в распределительной сети крайне мало, сегодня параллельная работа трансформаторов почти никогда не предусматривается (сами сети против). Шины станций действительно лучше сразу разделять, чтобы уменьшить воздействие на генераторы, но это другая тема.

Что же касается 3 вопроса, то у вас какая-то странная схема, когда СВ есть, а вводных выключателей нет. КЗ на линии, где отказал комплект РЗА, должно отключаться защитой ввода, а не удаленной защитой присоединения. При этом блокировка АВР пройдет в штатном режиме и СВ не включится. Если же у вас вместо выключателей на вводах стоят ВНА, то и АВР по 6(10) кВ делать нельзя, ровно по тем причинам, которые вы описали (нет возможности блокировать АВР при КЗ). В этом случае АВР можно сделать по 0,4 кВ ниже.

1. Во первых — параллельную работу трансформаторов никто не отменял. Действительно, применяется не часто, но применяется при режимах с большой разницей в нагрузках трансформаторов.
2. Хорошо, что про шины генераторного напряжения Вы согласны.
3. Приезжали ко мне слушатели, у которых в схемах: СВ есть, АВР есть, УРОВ есть, на вводах ВНА, а выключатель вводной линии находится за 300 метров.

Поэтому я и начал с того, что: «Для начала нужно понимать в каком режиме работает сеть» потому что универсальных решений в релейной защите на все случаи жизни быть не может.
Поэтому на СВ и применяют терминалы у которых 3…4 группы разных уставок для всех предполагаемых режимов работы сети.

Схемы и случаи бывают разные, это правда. Просто не вижу смысла рассказывать об этом начинающим релейщикам (о чем и написал в первой статье). Им сначала нужно дать общий фундамент, а уж потом смотреть исключения. Если сказать, что есть условные 25 режимов работы СВ и сразу всех их описывать (при том, что первый режим — это 95% всех решений в энергетике), то у читателя будет каша в голове. Но это мой подход и он, конечно, может быть не оптимальным.
Моя аудитория, в основном, именно начинающие специалисты. Для них я и пишу статьи и видео. А опытные спецы и без меня знают, как работает СВ)

В том то всё и дело, что информация для «начинающих». В результате упрощения в вышеприведенных материалах не видна разница между защитами вводного выключателя и секционного. А делительные защиты — тема вообще закрытая для данного форума. С уважением А.Л.Соловьёв.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

АВР на 2 ввода с секционным выключателем

2021-01-09 Промышленное 7 комментариев

Схема АВР на два ввода от трансформаторных подстанций с секционированием построена на базе автоматических выключателей с мотор-приводами, обеспечивающими автоматическое переключение вводов. В качестве логического устройства, управляющего работой схемы, используется программируемое реле EKF PRO-Relay.

Помимо данных устройств, в работе схемы задействованы реле контроля фаз для контроля фазных напряжений, симметрии и последовательности чередования фаз, автоматы питания цепей управления схемы АВР и мотор-приводов, промежуточное реле, через которое происходит переключение питания цепей управления либо с первого, либо со второго ввода, в зависимости от наличия напряжения на одном из них.

Автоматические выключатели оснащаются контактами состояния для сигнализации положения и контактами аварийного срабатывания.

Также в схеме задействованы переключатель выбора режимов работы ручной/автоматический, кнопка сброса ошибки АВР, лампы для индикации работы схемы.

Программируемое реле EKF PRO-Relay

Основное управление логикой работы осуществляется программируемым реле EKF PRO-Relay. Это позволяет добиться более гибкой реализации основных функций системы управления.

В данной схеме программируемое реле контролирует положение автоматических выключателей, обеспечивает включение-выключение вводов, с помощью него задаются и изменяются временные задержки на срабатывание выключателей, выполняются функции диагностики.

Кроме того, в случае необходимости, можно без лишних затрат изменить алгоритм работы схемы АВР, выводить необходимую информацию о работе АВР на верхний уровень по Modbus, правда для этого необходим дополнительный интерфейсный модуль.

В качестве программного обеспечения для PRO-Relay используется PRO-Design. Программу можно бесплатно скачать с официального сайта EKF.

Также для загрузки программы понадобится кабель ILR-ULINK, который необходимо будет приобретать отдельно.

Алгоритм работы схемы АВР

Вводной автомат QF1 питает секцию 1, QF2 питает секцию 2. В нормальном режиме работы каждый из подключенных к АВР потребителей получает питание от своей секции, при этом секционный выключатель находится в выключенном состоянии.

При пропаже питания на первом вводе, второй ввод запитывает, через секционный выключатель, секцию 1 и секцию 2 и соответственно наоборот, при пропаже питания на втором вводе, первый ввод, через секционный выключатель, обеспечивает питание секций 1 и 2.

АВР осуществляет свою работу в автоматическом режиме после подачи питания на программируемое реле согласно заложенному алгоритму, с 5 сек задержкой включения и отключения при пропаже и появления напряжения на одном из вводов и включение и отключение секционного выключателя.

При исчезновении напряжения на вводе 1 контакты реле KSV1 размыкаются, с 5 сек. задержкой подается команда на отключение автоматического выключателя QF1. Через определенный промежуток времени, включается секционный выключатель, при условии что:

  • Отключен вводной автомат QF1
  • Есть напряжение на вводе 2 (контакты реле KSV2 замкнуты)
  • Отсутствует сигнал Блокировка АВР
  • Переключатель выбора режимов работы SA1 в положении авто

При срабатывании выдается световая индикация на двери щита QF1 (Ввод1) – выкл. QF2 (Ввод2) – вкл. QF3 (Секционный) – вкл. Если напряжение на вводе 1 появится раньше, чем истечет время задержки 5 сек, то команда на включение секционного выключателя не подается.

При восстановлении питания на первом вводе подается команда, с задержкой, на отключение секционного выключателя QF3. Затем приходит команда на включение вводного автомата первого ввода.

При восстановлении ввода выдается световая индикация на двери щита QF1 (Ввод1) – вкл. QF2 (Ввод2) – вкл. QF3 (Секционный) – выкл.

При исчезновении напряжения на вводе 2 контакты реле KSV2 размыкаются, подается команда на отключение автоматического выключателя QF2. Весь процесс повторяется аналогично первому вводу.

При пропаже напряжения на обоих вводах контроллер отключается.

Блокировка работы АВР происходит при переключении мотор-приводов автоматических выключателей в ручной режим, при отключении QF1, QF2, QF3 по срабатыванию защиты по сигналу от контакта аварийного состояния, при неисправности блока управления АВР. При этом есть возможность перейти в ручной режим управления.

Сброс (квитирование) аварии осуществляется оператором методом отключения и включения питания контроллера, либо кнопкой на лицевой панели шкафа.

Задействованные входа-выхода программируемого реле

Входы DI

I1 – NO контакт реле контроля фаз KSV1
I2 – NO контакт реле контроля фаз KSV2
I3 – Переключатель SA1 (Ручной- Авто)
I4 – Кнопка SB1 Сброс ошибки (блокировки) АВР
I5 – Контакт состояния включено-выключено (Обозначение на схеме OF) QF1
I6 – Контакт аварийного срабатывания (Обозначение на схеме SY) QF1
I7 – Контакт состояния включено-выключено (Обозначение на схеме OF) QF2
I8 – Контакт аварийного срабатывания (Обозначение на схеме SY) QF2
I9 – Контакт состояния включено-выключено (Обозначение на схеме OF) QF3
IA — Контакт аварийного срабатывания (Обозначение на схеме SY) QF3

Выходы DO

Q1 – Индикация Работа АВР в автоматическом режиме
Q2 — Индикация Работа АВР в ручном режиме
Q3 — Индикация Ошибка работы АВР
Q4 – Отключить мотор привод автоматического выключателя QF1
Q5 – Включить мотор привод автоматического выключателя QF1
Q6 – Отключить мотор привод автоматического выключателя QF2
Q7 – Включить мотор привод автоматического выключателя QF2
Q8 – Отключить мотор привод автоматического выключателя QF3
Q9 – Включить мотор привод автоматического выключателя QF3

Схема АВР — Скачать

Программа — Скачать

Для чего нужны и какие бывают силовые коммутационные аппараты

Коммутационный аппарат выполняет основную функцию управления электрической цепью: включать и отключать. К этой разновидности аппаратов относятся: рубильники, выключатели, разъединители.

Выключатели предназначены включать и отключать электрические цепи «под током», т. е. во время протекания по цепи электрического тока.

Все электрические аппараты, имеющие подвижные части, могут быть разделены на автоматические и неавтоматические. Автоматические — это аппараты, приходящие в действие от заданного режима цепи, или машины, а неавтоматические, действие которых зависит только от воли оператора.

Автоматические выключатели бывают низковольтными (выпускаются на напряжение до 1000 В) и высоковольтными (на напряжение выше 1000 В).

Самый простой неавтоматический выключатель низкого напряжения — рубильник, состоящий в основном из подвижного ножа, неподвижного контакта и ручки.

Оператор рукой включает или отключает рубильник путем поворота ножа в вертикальное или горизонтальное положение. Контакты рубильника расположены просто в воздухе.

Простой однополюсный рублильник

Рублильник на 700 А на исторической гидроэлектростанции в Германии

Рублильники с предохранителями в закрытом распределительном устройстве в Китае

По мере роста рабочего напряжения и мощностей подобный аппарат уже не мог удовлетворить потребностям эксплуатации и постепенно появляются все более и более совершенные типы выключателей.

В электроустановках на напряжение до 1000 В наиболее широкое применение нашли воздушные автоматические выключатели различных конструкций.

Низковольтный автоматический выключатель Siemens на ток 16А

Низковольтный автоматический выключатель Schneider Electric на 125 А

Отчественные автоматические выключатели в электрощитовой (между ними разница в 30 лет)

При отключении цепи под током между расходящимися контактами выключателя появляется электрическая дуга которую необходимо погасить. Для лучшего гашения дуги в автоматах применяются специальные устройства, улучшающие процесс гашения дуги, так называемые дугогасящие камеры различного исполнения.

Электрощит закрытого контрольно-распределительного устройства

Для цепей высокого напряжения простой воздушный выключатель уже не мог удовлетворить требованиям эксплуатации. Первое, что было сделано в направлении усовершенствования конструкции выключателя, — опустили контакты в трансформаторное масло, в результате чего получился так называемый, масляный выключатель. В настоящее время масляный выключатель уже представляет очень сложное устройство, использующее для своей работы многие достижения науки и техники.

Выскоковольтный масляный выключатель на траснформаторной подстанции

Работа масляного выключателя при отключении сводится к следующему: от действия высокой температуры дуги масло разлагается на газы, основной составляющей которых является водород. Дуга, таким образом, горит в среде газа, который находится в динамическом состоянии, в нем происходит бурное перемешивание ионизированных и неионизированных частиц, холодных и горячих частиц газа и в един из моментов прохода тока через нуль, вследствие периодичности, дуга гаснет.

Образование газа происходит очень бурно, в выключателе создается значительное давление, и если выключатель сконструирован неправильно, он может взорваться.

В масляных выключателях, имеющих дугогасящие камеры, гашение дуги происходит более безболезненно и быстро. Здесь энергия дуги используется для создания давления, которое сильно увеличивает движение газа около дуги и тем самым способствует гашению дуги.

Конструкций камер много и принципы их действия довольно различны, но все они служат, главным образом, для одной из двух целей:

  • или создают движение масла и газа относительно дуги;
  • или дугу двигают относительно масла и стенок специальных камер.

Для подобных выключателей привод уже не составляет одно конструктивное целое с выключателем: в подавляющем большинстве случаев привод конструктивно выполняется отдельно от выключателя и связывается с последним с помощью специальных механизмов.

Существует также очень много других типов высоковольтных выключателей, давно вытесняющих многообъемные масляные выключатели. Это, например, малообъемные масляные выключатели, в которых применены фарфоровые баки, и потому не требуется специальной изоляции контактных частей от бака и количество масла в них значительно меньше.

Масляный колонковый выключатель на напряжение 10 кв

Затем следует упомянуть о «выключателях с сжатый воздухом», в которых гашение дуги производится струей сжатою воздуха. Эти выключатели имеют целый ряд преимуществ и все более и более вытесняют масляные выключатели. Привод для них также действует от сжатого воздуха, но управление приводом электрическое.

Воздушный выключатель на напряжение 110 кВ

Применяются также современные вакуумные и элегазовые выключатели.

Конструктивное оформление современных выключателей очень разнообразно, и подробнее о них вы можете прочитать здесь: Сравнительная характеристика масляных, элегазовых и вакуумных высоковольтных выключателей

Разъединители также являются высоковолтным коммутационным аппаратом, но не предназначены для включения и отключения под током (за исключением случая коммутации очень малых токов, специально указанных для каждого типа разъединителя).

Высококвольтный разъединитель, как правило, строится воздушным, т. е. с контактами, находящимися просто в воздухе, так как одно из основных требований к разъединителю: чтобы его контакты были видны непосредственно, дабы безошибочно можно было определить, включен разъединитель или отключен.

В сущности разъединитель — это электрический аппарат, предназначенный соединить (или разъединить) металлически два участка цепи между собой, когда по этим участкам ток протекать не может.

Конструкция разъединителя весьма сходна с конструкцией рубильника, только его размеры соответственно его рабочему высокому напряжению значительно больше и система привода значительно сложнее чем у рубильника.

К силовой коммутационной аппаратуре можно отнести еще ряд аппаратов, производящих операции включения и отключения, например, выключатели нагрузки, отделители и короткозамыкатели, но перечисленные в этой статье аппараты являются самыми яркими представителями коммутационной аппаратуры.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Форум / Электрика / Ячейка секционного выключателя 10кВ

voldemar_s
специалист

Ячейка секционного выключателя 10кВ

30 августа 2006 г., 15:57

Alexey_ESP
специалист

Re: Ячейка секционного выключателя 10кВ

30 августа 2006 г., 16:29

Один производитель (не говорю какой) утверждает что необходимо по условиям безопасности и визуального разрыва цепи ставить еще и разъединитель.

В ячейках КРУ 10 кВ как правило используют выкатные выключатели, которые и обеспечивают требование ПУЭ о наличии видимого разрыва, поэтому как таковой разъеденитель не нужен.

total
специалист

Re: Ячейка секционного выключателя 10кВ

30 августа 2006 г., 16:42

дарю людям свет и тепло. не всегда успешно.

voldemar_s
специалист

Re: Ячейка секционного выключателя 10кВ

30 августа 2006 г., 17:18

total
специалист

Re: Ячейка секционного выключателя 10кВ

30 августа 2006 г., 18:21

дарю людям свет и тепло. не всегда успешно.

Re: Ячейка секционного выключателя 10кВ

31 августа 2006 г., 10:06

Re: Ячейка секционного выключателя 10кВ

31 августа 2006 г., 10:07

voldemar_s
специалист

Re: Ячейка секционного выключателя 10кВ

31 августа 2006 г., 10:25

total
специалист

Re: Ячейка секционного выключателя 10кВ

31 августа 2006 г., 13:29

Да, правда. По другому это не реализуемо. Можно конечно вместо ячейки СВ поставить линейную ячейку и кабель увести на шины другой секции, но как ты его потом без гашения этой секции будешь испытывать?
Резюме: всегда надо две ячейки, чтобы соблюсти требования ПУЭ по созданию видимого разрыва при работах в ячейках СВ и СР.

дарю людям свет и тепло. не всегда успешно.

voldemar_s
специалист

Re: Ячейка секционного выключателя 10кВ

06 сентября 2006 г., 11:22

пункт — 3.1.2 (или смотрите по ссылке —
http://www.niiot.ru/doc/doc096/doc_03.htm )
Так там звучит следующее —
» 3.1.2. В электроустановках напряжением выше 1000 В с каждой стороны, с которой коммутационным аппаратом на рабочее место может быть подано напряжение, должен быть видимый разрыв. Видимый разрыв может быть создан отключением разъединителей, снятием предохранителей, отключением отделителей и выключателей нагрузки, отсоединением или снятием шин и проводов.

Видимый разрыв может отсутствовать в комплектных распределительных устройствах заводского изготовления (в том числе с заполнением элегазом) с выкатными элементами, и/или при наличии надежного механического указателя гарантированного положения контактов , а также в элегазовых КРУЭ напряжением 110 кВ и выше. «

Йола
специалист

06 сентября 2006 г., 11:27

total
специалист