Назначение транзистора в электрической цепи

Для чего нужны транзисторы и как они работают

Концепция транзисторов

Что такое концепция? Это общее представление об объекте или процессе. Например, концепция автомобиля – это четыре колеса, руль, корпус, двигатель и коробка передач. Концепция одна, а выпускаются автомобили с разной конструкцией, устройством и предназначением.

У транзисторов, как и у вакуумных триодов, очень простая концепция и принцип работы.

Триод – это та деталь, у которой три контакта.

Давайте представим бак с водой, в центре которого установлена задвижка.

Что мы можем сделать с потоком воды? Мы можем управлять им за счет задвижки.

Например, если в баке течет вода, и задвижки нет в нем, то вода проходит без препятствия.

В тоже время, если мы полностью перекроем путь задвижкой, то и вода не будет поступать во вторую условную часть бака и поток прекратится.

А еще мы можем полностью управлять потоком воды при помощи регулировки задвижки.

Получается, что при помощи небольшой задвижки можно контролировать огромный поток воды.
Небольшие колебания (перемещения) задвижки позволяют с такой же частотой пропускать большой поток воды.

Но в тоже время транзисторы могут быть по разному устроены.

Полевые транзисторы

Описанный выше пример – это полевой транзистор. У самого простого полевого транзистора есть сток, исток и затвор.

Транзисторы изготавливаются из полупроводниковых материалов. Поэтому, у них есть второе название — полупроводниковые триоды.

При помощи полупроводников можно изготовить p-n переход.

Любой транзистор состоит из p-n переходов, которые пропускают электрический ток в одном направлении. И этот переход позволят управлять электрическим током как задвижкой.

Полевые транзисторы управляются при помощи напряжения, которое подается на затвор.

Так выглядит состав полевого транзистора с каналом p – типа.

А вот так с n – типом.

Канал транзистора – это область между истоком и стоком.

Почему транзисторы бывают разными по проводимости? Транзистор с n типом управляется при помощи положительного потенциала, а с p типом наоборот, отрицательным потенциалом. Это позволяет усиливать сигналы с разными потенциалами.

Затворов у полевых транзисторов на самом деле два, но их выводы объединены в один, так как функция у них одинакова. Зачем нужно два затвора? Так транзистором проще управлять.

Подавая напряжение на затвор, мы можем регулировать электрический ток проходящий от истока к стоку.

А самое главное не это. Самое главное, что мы можем таким образом не просто включить или выключить электрический ток по цепи, но и управлять его движением.

Например, можно подать на затвор полевого транзистора переменный сигнал 5 мкВ. И он будет модулировать электрический ток, который проходит через исток и сток транзистора. Так можно получить усиленный сигнал.

Также полевые транзисторы имеют разные схемы включения, которые позволяют согласовывать сопротивления и регулировать усилительные функции.

Обозначение (УГО) полевого транзистора с каналом n типа на принципиальных схемах:

Биполярные транзисторы

Это другой тип транзисторов. Такие транзисторы управляются при помощи электрического тока. И они состоят из чередующихся p-n переходов.

Как и у полевого транзистора, у биполярного тоже три контакта. Это эмиттер, база и коллектор. База всегда по типу противоположна эмиттеру и коллектору.

Эмиттер — это большой источник основных носителей заряда. А коллектор — это самый большой контакт из этой троицы. С коллектора снимается усиленный сигнал в классической схеме, чтобы получить максимальную мощность. В транзисторах большой мощности коллектор припаян напрямую к корпусу, чтобы рассеивать тепло.

Бывают биполярные транзисторы n-p-n типа.

Обозначение (УГО) биполярного n-p-n транзистора на принципиальных схемах:

Отличие биполярных транзисторов от полевых

Полевые транзисторы управляются при помощи электрического поля и благодаря этому они очень энергоэффективны. Именно по этой причине они используются при производстве процессоров.

С другой стороны, у полевых транзисторов есть слабое место. Это их тонкий p-n переход. Он очень чувствителен к статическому электричеству. Кстати, именно из-за статического электричества перестают работать флешки и карты памяти, если вы их вытащили из устройства во время работы.

Схемы защиты от статического электричества не успевают сработать, и статика разрушает полевые транзисторы.

А вот биполярные транзисторы наоборот, лучше переносят статику. Но в тоже время, они потребляют больше мощности, так как для их открытия нужен электрический ток.

Схемы включения

Так как у транзисторов три контакта, то можно чередовать вход и выход. Что это даст? У каждого контакта свои особенности. Например, если мы подадим сигнал на базу и эмиттер биполярного транзистора, а снимать итоговый сигнал будем с эмиттера и коллектора, то такая схема будет называются с общим эмиттером.

Этот тип включения позволяет передать максимум мощности в нагрузку.

Прочитать подробнее про работу схемы с общим эмиттером можно в этой статье.

Аналогичным образом можно подключить схему с общим коллектором и с общей базой. По сути, общий контакт — это такой контакт, который работает и на входе и на выходе одновременно с разными контактами.

Все тоже самое справедливо и для полевых транзисторов. Есть схемы с общим стоком, истоком и затвором.

Другие типы транзисторов

А еще бывают однопереходные, комплементарные и КМОП, МДП (MOSFET) и множество других транзисторов. Они разные по своим характеристикам, выполняют разные задачи и предназначены для конкретных целей. Но в целом, принцип работы у всех одинаков. Это управление электрическим током.

Характеристики

Так как полупроводниковые триоды (транзисторы) выполнены из полупроводника, то и на их работу влияет окружающая среда. Например, при изменении температуры окружающей среды, транзистор может вносить нелинейные искажения в выходной сигнал. С этим борются при помощи термпостабидизционных схем, которые позволяют стабилизировать работу транзистора на высоких температурах.

Также у транзисторов есть ВАХ (вольт-амперные характеристики), которые в отличие от вакуумной техники, быстро переходят в насыщение.

У всех транзисторов есть следующие параметры:

  • Коэффициент усиления по току;
  • Коэффициент усиления по напряжению;
  • Коэффициент усиления по току;
  • Коэффициент обратной связи;
  • Коэффициент передачи по току;
  • Входное сопротивление;
  • Выходное сопротивление;
  • Время включения;
  • Максимально допустимый ток и др.
  • Обратный ток коллектор-эмиттер;
  • Частота коэффициента передачи тока базы;
  • Обратный ток коллектора;
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером и др.

Режимы работы

В целом, можно выделить несколько режимов работы:

  • Номинальный режим;
  • Инверсный;
  • Насыщения;
  • Отсечка;
  • Барьерный.

Функции транзисторов

Транзисторы выполняют следующие функции:

  1. Позволяют усиливать электрические сигналы. Транзисторы усиливают любые электрические сигналы, как высокие так и низкие частоты.
  2. Могут работать как ключ, включать и выключать поступление электрического тока. Благодаря этому простому включению и выключению работают все современные процессоры. Транзисторы – это основа всей современной цифровой техники.
  3. Генерируют электрические сигналы за счет положительной обратной связи. На их основе можно сделать генераторы звука и сигналов.
  4. Могут согласовывать сопротивления электрических цепях за счет различных схем включения и работают как ограничители тока. В блоках питания транзисторы могут ограничивать ток короткого замыкания, а также работать как предохранитель.

Чем транзисторы уступают лампам

Несмотря на неоспоримые преимущества транзисторов перед лампами, ламповые триоды по прежнему имеют ряд преимуществ., среди которых:

  • Устойчивость к высоким электромагнитным наводкам и помехам. Это не значит, что полупроводниковая техника может выйти из строя от любых помех. Но если случится сильнейшая магнитная буря от Солнца (или мощный ЭМИ удар от ядерных бомб), то все p-n переходы в полупроводниковой технике могут выйти из строя из-за высоких токов наводки. Вакуумная техниках намного устойчивее к таким помехам.
  • Ламповая техника намного лучше и стабильнее работает на высоких частотах. И это уже особенности конструкции. Так как в транзисторах есть p-n переходы, то у них тоже есть своя емкость. А паразитная емкость на высоких частотах негативно влияет на усиление сигнала. Появляются нелинейные искажения. А в вакуумной технике есть такие лампы, у которых по несколько экранирующих сеток, которые позволяют снизить эффект паразитных емкостей. Пример радиолампы — это клистрон.

Нельзя прямо сказать, что транзисторы полностью искоренили лампы. У каждой детали есть свои преимущества и недостатки в разных областях. Конечно, в цифровой технике транзисторам нет ровни среди ламп. Однако на сверхвысоких частотах транзисторы по-прежнему уступают лампам.

Транзисторы: схема, принцип работы,​ чем отличаются биполярные и полевые

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Транзистор: виды, применение и принципы работы

Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.

  • Принцип работы прибора
  • Виды транзисторов
    • Полевые
    • Биполярные
  • Применение транзисторов в жизни
  • Литература по электронике

Принцип работы прибора

Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.

Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:

  1. Электронные.
  2. Дырочные.

В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу. А значит, и проводимость тока больше. Такие полупроводники называются электронными.

Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.

Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток. Такие полупроводники называются дырочными.

Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

  • Полевые.
  • Биполярные.

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • Со встроенным каналом.
  • С индуцированным каналом.

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Биполярные

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

  • pnp;
  • npn.

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  1. Усилительные схемы.
  2. Генераторы сигналов.
  3. Электронные ключи.

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

Устройство и принцип работы транзистора

Практическую значимость биполярного транзистора для современной электроники и электротехники невозможно переоценить. Биполярные транзисторы применяются сегодня повсюду: для генерации и усиления сигналов, в электрических преобразователях, в приемниках и передатчиках, да и много где еще, перечислять можно очень долго.

Поэтому в рамках данной статьи мы не будем касаться всевозможных сфер применения биполярных транзисторов, а только рассмотрим устройство и общий принцип действия этого замечательного полупроводникового прибора, который начиная с 1950-х годов перевернул всю электронную промышленность, а с 70-х годов сильно способствовал ускорению технического прогресса.

Биполярный транзистор — трехэлектродный полупроводниковый прибор, включающий себя в качестве основы три слоя чередующихся по типу проводимости. Таким образом, транзисторы бывают NPN и PNP-типа. Полупроводниковые материалы, из которых делают транзисторы, это в основном: кремний, германий, арсенид галлия и другие.

Кремний, германий и другие вещества изначально являются диэлектриками, но если в них добавить примеси, то они станут полупроводниками. Добавки в кремний типа фосфора (донор электронов) сделают кремний полупроводником N-типа, а если в кремний добавить бор (акцептор электронов), то кремний станет полупроводником P-типа.

В результате полупроводники N-типа обладают электронной проводимостью, а полупроводники P-типа — дырочной проводимостью. Как вы поняли, проводимость определяется по виду рабочих носителей заряда.

Так вот, трехслойный пирог из полупроводников P-типа и N-типа — это по сути и есть биполярный транзистор. К каждому слою припаяны выводы, которые называются: эмиттер, коллектор и база.

База — это управляющий проводимостью электрод. Эмиттер — это источник носителей тока в цепи. Коллектор — это то место, в направлении которого устремляются носители тока под действием приложенной к устройству ЭДС.

Условные обозначения биполярных транзисторов типов NPN и PNP на схемах различны. Данные обозначения как раз и отражают устройство и принцип действия транзистора в электрической цепи. Стрелка всегда изображается между эмиттером и базой. Направление стрелки — это направление управляющего тока, который подается в цепь база-эмиттер.

Так, у NPN-транзистора стрелка направлена от базы в сторону эмиттера, это значит что в активном режиме именно электроны из эмиттера устремятся к коллектору, при этом управляющий ток должен быть направлен от базы — к эмиттеру.

У PNP-трназистора наоборот: стрелка направлена от эмиттера в сторону базы, это значит что в активном режиме дырки из эмиттера устремляются к коллектору, при этом управляющий ток должен быть направлен от эмиттера — к базе.

Давайте разберемся, почему так происходит. При подаче постоянного положительного напряжения на базу NPN-транзистора (в районе 0,7 вольт) относительно его эмиттера, p-n-переход база-эмиттер данного NPN-транзистора (см. рисунок) смещается в прямом направлении, и потенциальный барьер между переходами коллектор-база и база-эмиттер снижается, теперь электроны могут двигаться через него под действием ЭДС в цепи коллектор-эмиттер.

При достаточном токе базы, ток коллектор-эмиттер возникнет в данной цепи и сложится с током база-эмиттер. NPN-транзистор перейдет в открытое состояние.

Соотношение между током коллектора и управляющим током (базы) называется коэффициентом усиления транзистора по току. Данный параметр приводится в документации на транзистор, и может лежать в диапазоне от единиц до нескольких сотен.

При подаче постоянного отрицательного напряжения на базу PNP-транзистора (в районе -0,7 вольт) относительно его эмиттера, n-p-переход база-эмиттер данного PNP-транзистора смещается в прямом направлении, и потенциальный барьер между переходами коллектор-база и база-эмиттер снижается, теперь дырки могут двигаться через него под действием ЭДС в цепи коллектор-эмиттер.

Обратите внимание на полярность питания коллекторной цепи. При достаточном токе базы, ток коллектор-эмиттер возникнет в данной цепи и сложится с током база-эмиттер. PNP-транзистор перейдет в открытое состояние.

Биполярные транзисторы обычно используются в различных устройствах в усилительном, барьерном или в ключевом режиме.

В усилительном режиме ток базы никогда не опускается ниже тока удержания, при котором транзистор все время пребывает в открытом проводящем состоянии. В данном режиме колебания малого тока базы инициируют соответствующие колебания значительно большего тока коллектора.

В ключевом режиме транзистор переходит из закрытого состояния в открытое, выполняя роль быстродействующего электронного коммутатора. В барьерном режиме — путем варьирования тока базы управляют током нагрузки, включенной в цепь коллектора.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Транзисторы: принцип работы,​ схема подключения, отличие биполярного от полевого

В свое время за открытие транзистора его создатели удостоились Нобелевской премии. Этот маленький прибор изменил человечество навсегда: начиная с простых радиоприемников и заканчивая процессорами, в которых их число достигает нескольких миллиардов. Между тем, чтобы узнать, как он работает, не нужно быть золотым медалистом или лауреатом «нобелевки».

  1. Что такое транзистор
  2. Принцип действия
  3. Биполярный транзистор
  4. Полевой транзистор
  5. Основные характеристики
  6. Типы подключений
  7. Виды транзисторов

Что такое транзистор

Транзистор – это прибор, изготовленный из полупроводниковых материалов. Выглядит как маленькая металлическая пластинка с тремя контактами. Назначений у него два: усиливать поступающий сигнал и участвовать в управлении компонентами электроприборов.

Принцип действия

Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.

В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.

Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.

Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.

В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.

Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.

Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.

Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.

Биполярный транзистор

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Полевой транзистор

Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.

Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала. Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал. Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.

Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).

Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.

Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.

Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.

Существует два вида МДП-затвора:

  1. МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
  2. МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

Типы подключений

Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.

По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.

  1. Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
  2. Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
  3. Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.

Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.