Какое освещение осуществляется электрическими лампами?

ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ

ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ, преобразование электроэнергии в свет в целях создания гигиенически благоприятных, комфортных и безопасных условий для зрительного восприятия.

ВНУТРЕННЕЕ ОСВЕЩЕНИЕ

На изложенных общих принципах должно базироваться освещение любого внутреннего помещения. Однако в таких общественных помещениях, как магазины и театры, где не ставятся крайне ответственные задачи зрительной работы и где воздействие на воображение и привлекательность более приоритетны, чем комфортность и эффективность зрительного восприятия, качество освещения имеет менее важное значение. Оно весьма существенно там, где приходится иметь дело с очень ответственными задачами зрительной работы, – в операционных, учреждениях, механических цехах, школьных классах, студенческих аудиториях.

В качестве источников света для внутреннего освещения применяются в основном лампы накаливания и газоразрядные лампы (люминесцентные, ртутные и др.). Большинство учреждений, школ и общественных зданий освещается люминесцентными лампами или лампами накаливания, тогда как во многих производственных помещениях, особенно с высокими потолками, используются ртутные, а также люминесцентные лампы. Но во всех случаях источники света должны быть закрыты экранами, исключающими прямую блескость, а там, где это возможно, – и отраженную. В одном из конструктивных вариантов светильник с минимальной прямой и отраженной блескостью посылает почти весь свой выходной световой поток вверх, на потолок, который выполняет роль вторичного источника большой площади с малой яркостью.

Еще один важный способ повышения качества внутреннего освещения – применение матового отделочного покрытия с высокой отражающей способностью для потолка, стен, пола и мебели. Это превращает потолок, стены, пол и мебель во вторичные источники света большой площади, благодаря чему не только повышается коэффициент использования света в помещении, но и увеличивается доля рассеянного света, а также устраняются резкие тени.

Исследования условий оптимального освещения помещений, требующих комфортности, привели к следующим выводам: потолки лучше всего делать белыми с высоким коэффициентом отражения, порядка 85%; коэффициент отражения стен должен составлять 40–60% (при этом возможен широкий спектр приятных оттенков); коэффициент отражения мебели должен составлять около 35%, пола – не менее 20%. Эти требования подразумевают, в частности, что на окнах должны быть предусмотрены неяркие занавеси, задергиваемые в темное время суток, а поверхность стола должна иметь достаточно высокий коэффициент отражения, чтобы по яркости она не контрастировала с белой бумагой. Высокие коэффициенты отражения способствуют созданию идеальных условий для зрительной работы.

НАРУЖНОЕ ОСВЕЩЕНИЕ

Изложенные выше общие принципы относятся и к наружному освещению. Рекомендуемое количество света здесь обычно меньше, так как задачи зрительной работы менее ответственны и высокий уровень освещенности экономически неоправдан. Качество освещения тоже менее существенно, особенно при очень низких уровнях освещенности, но прямая блескость должна устраняться или сводиться к минимуму.

Освещение дорог.

Главная цель освещения дорог – обеспечение хорошей видимости в ночное время, необходимой для безопасного и удобного движения пешеходов и транспорта.

При проектировании дорог обычно учитываются такие факторы, как интенсивность движения, рельеф, статистика дорожно-транспортных происшествий, типы транспортных средств, ожидаемые скорости движения, правила парковки, строительные характеристики (размеры, материалы) и наличие особых участков – пересечений, развязок, мостов, путепроводов, подъездных путей. Источниками света на улицах городов и автомагистралях служат в основном газоразрядные лампы.

Заливающий свет.

Заливающий свет, создаваемый лампами (накаливания и газоразрядными) с рефлекторами, применяется для наружного освещения зданий, а также для освещения стадионов, автомобильных стоянок и других открытых многолюдных зон. В широких масштабах такое освещение впервые было применено на Панамерикано-Тихоокеанской международной выставке в Сан-Франциско в 1915, где полная затрачиваемая на это мощность составляла около 8 МВт. С появлением более совершенных источников света стало возможно освещение заливающим светом многих видов спортивных сооружений – для игры в бейсбол, футбол, теннис.

ЭЛЕКТРИЧЕСКИЕ ИСТОЧНИКИ СВЕТА

Существуют два основных вида электрических источников света – лампы накаливания и газоразрядные лампы. Среди газоразрядных ламп особое место занимают люминесцентные.

ЛАМПЫ НАКАЛИВАНИЯ

В лампах накаливания свет испускает металлическая проволочка (нить), раскаленная добела проходящим по ней током.

Устройство лампы.

Типичная бытовая лампа накаливания (общего назначения) состоит из следующих частей (рис. 1): нити накала в виде спирали из вольфрамовой проволочки, стеклянного баллона (который откачивается и заполняется инертным газом) и цоколя, который является объединяющей и силовой деталью лампы и имеет контакты для подключения нити накала к электропитанию. Все эти три элемента конструкции могут быть разного размера и различной формы в зависимости от назначения – лампа общего назначения, с внутренним отражателем, витринная, для уличного освещения, для автомобильных фар, для карманного фонаря, фотографическая лампа-вспышка. В бытовых лампах с тремя режимами накаливания имеются две нити накала, которые можно включать по отдельности и вместе, получая разную яркость. Средний срок службы большинства бытовых ламп при номинальном напряжении составляет 750–1000 ч.

Достоинства и недостатки.

Достоинства лампы накаливания таковы: низкая начальная стоимость лампы и необходимого для нее оборудования, компактность, благодаря которой она хорошо подходит для регулирования светового потока, надежная работа при низких температурах и довольно высокий при ее размерах световой выход. К недостаткам же, способным при некоторых обстоятельствах перевесить достоинства, относятся низкий световой КПД, высокая рабочая температура и заметные колебания светового выхода при изменениях напряжения питания.

ГАЗОРАЗРЯДНЫЕ ЛАМПЫ

В газоразрядных лампах электроэнергия преобразуется в свет при прохождении электрического тока через газ или пары металла. Цвет светового излучения зависит от рода газа, его давления и от вида люминофора, нанесенного на внутренние стенки стеклянного баллона лампы. Газоразрядные лампы наполняются инертными газами (неоном, аргоном, криптоном или ксеноном), а также парами ртути или натрия.

Ртутные лампы.

Ртутные лампы типа применяемых в промышленности состоят из следующих частей (рис. 2): кварцевой трубки дугового разряда, наполненной аргоном и парами ртути; наружной стеклянной колбы (с внутренним люминофорным покрытием), окружающей трубку дугового разряда, закрывающей ее от воздействия потоков окружающего воздуха и предотвращающей окисление; цоколя, на котором держится вся лампа и имеются электрические контакты для подвода напряжения питания. Размеры и форма этих конструктивных элементов могут быть разными в зависимости от типа лампы – общего назначения (с прозрачной колбой, с люминесцентным покрытием, с исправленной цветностью, рефлекторная, полурефлекторная лампы), ультрафиолетовые, солнечного света и фотохимические лампы. Средний срок службы ртутных ламп общего назначения составляет 6000–12 000 ч.

После того как ртутная лампа включена и в ней установился дуговой разряд, ток разряда через пары ртути сам по себе непрерывно нарастает. Поэтому его приходится ограничивать внешним балластным устройством.

Достоинства и недостатки.

Ртутные лампы отличаются высоким световым КПД (в 2–3 раза большим, чем у ламп накаливания общего назначения), большим сроком службы и компактностью, благодаря чему они хорошо подходят для регулирования светового потока. Их недостатки – высокая стоимость лампы и вспомогательного оборудования, синевато-зеленый оттенок свечения и медленный повторный пуск. Цветность ртутной лампы исправляется применением внутреннего люминофорного покрытия.

Люминесцентные лампы.

Люминесцентные лампы состоят из следующих основных деталей (рис. 3): стеклянного баллона, двух цоколей (с выводными контактами) на обоих концах баллона и двух подогревных катодов (электронных эмиттеров) из вольфрамовой нити или стальной трубки. Баллон наполнен парами ртути и инертным газом (аргоном); на внутренние стенки баллона нанесено люминофорное покрытие, преобразующее ультрафиолетовое излучение газового разряда в видимый свет. Конструкция лампы, представленная на рис. 3, типична для самых распространенных 40-Вт ламп.

Лампа действует следующим образом. Электрод на одном из концов лампы испускает электроны, которые с большой скоростью летят вдоль лампы, пока не произойдет столкновение со встретившимся атомом ртути. При этом они выбивают электроны атома на более высокую орбиту. Когда выбитый электрон возвращается на прежнюю орбиту, атом испускает ультрафиолетовое излучение. Последнее, проходя через люминофор, преобразуется в видимый свет.

Типы ламп.

Люминесцентные лампы делятся на две группы соответственно типу электродов: с подогревными катодами и с холодными катодами. В лампах с подогревными катодами, которые рассчитываются на большие токи (1–2 А), как правило, используются спиральные активированные вольфрамовые нити накала. В лампах же с холодными катодами предусматриваются цилиндрические электроды с покрытием из эмиттерных материалов, и они рассчитываются на меньшие токи. Средний срок службы ламп с подогревными катодами зависит от наработки на один пуск: 7500 ч при 3 ч наработки на один пуск и более 18 000 ч в непрерывном режиме. Для ламп же с холодными катодами срок службы не зависит от числа пусков и достигает 25 000 ч.

Лампы с подогревными катодами по способу их пуска делятся на лампы с предварительным прогревом, быстрого и моментального пуска. Как и все другие газоразрядные приборы, лампы с подогревными катодами нельзя присоединять к источнику питания без балластного устройства, ограничивающего ток (рис. 4). Лампы с предварительным прогревом нуждаются также в стартере; при пуске такой лампы замыкается стартер, и катоды, соединенные последовательно, подключаются к сети питания, так что по ним проходит ток. После того как катоды разогреются настолько, что могут эмиттировать электроны, стартер автоматически размыкается, и лампа загорается. В благоприятных условиях весь пуск занимает несколько секунд. В лампах быстрого пуска катоды нагреваются постоянно, а разряд возникает при повышении напряжения. Стартеры не требуются, и время пуска значительно меньше, чем у ламп с предварительным прогревом. В лампах моментального пуска не требуется ни прогрева катодов, ни стартера. Просто на катод подается повышенное напряжение, которое вызывает эмиссию электронов и зажигание разряда в лампе.

Достоинства и недостатки.

К достоинствам люминесцентных ламп относятся высокая световая отдача (до 77 лм/Вт) и большая долговечность. Недостатки – высокая начальная стоимость лампы и светильника, шум дросселя стартера и мерцание. Хотя перечень недостатков обширнее, достоинства столь велики, что уже к 1952 лампы накаливания в США были вытеснены люминесцентными лампами в качестве основного электрического источника света.

Электролюминесцентные лампы.

В отличие от люминесцентных ламп (в которых свет испускается при возбуждении люминофора ультрафиолетовым излучением газового разряда), в электролюминесцентных лампах, изобретенных в 1936, электроэнергия преобразуется непосредственно в свет благодаря применению специальных люминофоров. Лампа представляет собой многослойную конструкцию из слоя люминофора (цинк-сульфидного, активированного медью или свинцом) и двух электропроводящих пластин, одна из которых прозрачна. Устройство электролюминесцентных ламп двух типов показано на рис. 5. Цвет свечения лампы (синий, зеленый, желтый или розовый) зависит от частоты напряжения питания, а яркость – от частоты и напряжения. Электролюминесцентные лампы пока что не отличаются большой световой отдачей. См. также ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ.

Епанешников М.М. Электрическое освещение. М., 1973
Кнорринг Г.М. и др. Справочная книга для проектирования электрического освещения. Л., 1976
Лозовский Л.И. Проектирование электрического освещения. Минск, 1976
Кунгс Я.А., Фаермарк М.А. Экономия электрической энергии в осветительных установках. М., 1984

Электрическое освещение. Нормирование, выбор, качество, расположение и установка светильников.

Основную часть информации человек получает через органы зрения, и носителем этой информации является излучение, называемое светом. Благодаря действию светового излучения человек может не только воспринимать зрительные образы предметов, но и видеть окружающий его мир во всем разнообразии красок.

Современное общество немыслимо без повсеместного использования искусственного света. Осветительные установки создают необходимые условия освещения, которые обеспечивают зрительное восприятие (видение), дающее около 90% информации, получаемой человеком из окружающего мира. Без современных средств освещения невозможна работа ни одного предприятия. Особенно важную роль свет играет для работников шахт, рудников, предприятий, имеющих здания без окон, метрополитена, многих взрывои пожароопасных производств. Без искусственного света не может обойтись ни один современный город, невозможно строительство, а также работа транспорта в темное время суток.

Эффективное использование света с помощью достижений современной светотехники — важнейший резерв повышения производительности труда и качества продукции, снижения травматизма и сохранения здоровья людей. Главной задачей современной светотехники является создание комфортной световой среды для труда и отдыха человека, а также эффективное применение оптического излучения в технологических процессах при рациональном использовании электрической энергии.

Свет является разновидностью электромагнитной энергии. Видимый свет представляет собой разновидность электромагнитных колебаний с длиной волны от 380 до 760 нм. Энергия, передаваемая лучеиспусканием, называется энергией излучения, а ее мощность — потоком излучения. Часть потока излучения, вызывающая световое ощущение, называется световым потоком.

Световые волны разной длины вызывают у человека различные цветовые ощущения. Зрачок человеческого глаза фокусирует лучи на чувствительных рецепторах сетчатки. Зрительные центры мозга синтезируют образ из множества изображений, полученных обоими глазами, рассматривающими объект в определенной последовательности. Воздействие на глаз видимого излучения вызывает ощущение разных цветов от фиолетового до красного, причем восприимчивость глаза к цветам видимого спектра различна. При одинаковой мощности светового излучения глаз наиболее чувствителен к желтовато-зеленому цвету. В сторону красного и фиолетового цветов чувствительность глаза понижается и доходит до нуля на границах видимой части спектра.

Свет, падающий на предметы, дает достаточную информацию о форме и размерах наблюдаемых объектов. Необходимо выбрать такое освещение, чтобы получить исчерпывающую информацию о них.

1. Нормирование и устройство освещения

1.1. Общие принципы нормирования освещения

Осветительные установки производственного и бытового назначения должны обеспечивать требуемую видимость (различимость) предметов. Общие требования к осветительным установкам можно разделить на светотехнические, экономические и требования безопасности. Экономические требования и требования безопасности для осветительных установок в основном такие же, как и для других электроустановок.

Светотехнические требования заключаются в следующем: достаточная яркость, или освещенность освещаемой поверхности, благоприятная равномерность освещения, постоянство освещенности во времени, необходимое ограничение слепящего действия, отсутствие резких и глубоких теней и благоприятное направление светового потока.

Видимость объекта зависит от контраста его с фоном, уровня яркости фона и углового размера объекта. Размеры рассматриваемого объекта и контраст его с фоном определяются характером зрительной работы, поэтому уровень видимости объекта целиком зависит от уровня яркости фона, создаваемого осветительной установкой. При измерении и расчете яркости на практике возникают трудности. В связи с этим действующие в России и за границей правила нормируют освещенность, а не яркость. При этом регламентируется коэффициент отражения фона. Строго говоря, такое нормирование справедливо лишь для диффузно отражающего фона и совершенно неприемлемо для фона с направленным (зеркальным) отражением. Нормы освещенности имеют своей целью обеспечение требуемого уровня видимости при приемлемом расходе электроэнергии, материалов и оборудования.

Большинство зарубежных норм освещения имеет рекомендательный характер. В них нормируется средняя освещенность. Отечественные нормы регламентируют минимальную освещенность на рабочем месте. Ведомственные и отраслевые нормы разработаны на основе общих норм. Они содержат указания по освещению помещений и рабочих мест, характерных для данной отрасли или ведомства.

1.2. Виды освещения

Освещение разделяется по видам на рабочее, предназначенное для создания нормальных условий работы, и аварийное, которое может иметь одно из двух назначений: для продолжения работы при погасании рабочего освещения; для эвакуации людей из производственных помещений.

Устройство рабочего освещения обязательно во всех случаях независимо от наличия аварийного освещения.

Аварийное освещение для продолжения работы необходимо в помещениях и на открытых пространствах, если прекращение нормальной работы из-за отсутствия рабочего освещения может вызвать:

· взрыв, пожар, отравление людей;

· длительное нарушение технологического процесса;

· нарушение работы жизненных центров предприятий и городов, обслуживающих связь, электрои водоснабжение и т.п.;

· опасность травматизма в местах массового скопления людей; нарушение нормальной работы операционных, кабинетов неотложной помощи и приемных покоев лечебных учреждений.

Это освещение должно создавать на поверхностях, требующих обслуживания, освещенность 5% нормированной для одного общего освещения, причем при отсутствии особых обоснований — в пределах от 2 до 30 лк в зданиях и от 1 до 5 лк вне их.

Аварийное освещение для эвакуации людей (в зданиях или вне их) необходимо:

· в местах, опасных для прохода людей;

· по путям эвакуации людей из производственных и общественных помещений, где пребывает более 50 человек;

· на лестницах жилых домов высотой 6 этажей и более;

· во всех производственных помещениях с числом работающих более 50 и остальных помещениях с числом пребывающих более 100 человек;

· в производственных помещениях с постоянно работающими людьми, выход которых в темноте опасен из-за продолжения работы оборудования.

Это освещение должно создавать в проходах освещенность 0,5 лк в зданиях и 0,2 лк вне их.

Для аварийного освещения могут применяться только лампы накаливания или люминесцентные; допускается присоединение к группам аварийного освещения ламп ДРЛ или ДРИ для увеличения освещенности сверх нормативной для аварийного режима.

Светильники аварийного освещения преимущественно выделяются из числа светильников рабочего освещения: в помещениях, где работают в 1—2 смены, при мощности ламп рабочего освещения 200 Вт и более предпочтительна установка дополнительных светильников.

Если светильники аварийного освещения не отличаются от остальных типом или размером, то они должны быть отмечены специальными знаками.

Выходы из производственных помещений без естественного света площадью 150 м2 и более и из непроизводственных помещений с пребыванием в них более

100 человек должны отмечаться световыми указателями, присоединенными к сети аварийного освещения.

Устройство аварийного освещения зрелищных предприятий регламентируется отдельными правилами.

1.3. Система освещения

Освещение может быть общим равномерным, общим локализованным (выполненным с учетом расположения рабочих мест) или комбинированным, состоящим из общего освещения помещения и местного освещения рабочих поверхностей. Устройство в помещениях только местного освещения запрещено.

Временное местное освещение, осуществляемое преимущественно ручными светильниками, называется переносным.

Нормы (здесь и в дальнейшем имеется ввиду СНиП II-А.9-71) рекомендуют комбинированное освещение для помещений с работами разрядов I — IV, Va и Vб, но при невозможности или нецелесообразности устройства такового освещения допускается система одного общего освещения, имеющая некоторые гигиенические и эстетические преимущества.

Cистема комбинированного освещения применяется там, где наличествует:

· высокая точность выполняемых работ;

· специфические требования к качеству освещения (например, к направлению света);

· ограниченная площадь рабочих поверхностей;

· большая площадь помещения, приходящаяся на одно рабочее место;

· возможность перестановки рабочих мест.

В противном случае применяется одно общее освещение.

Общее освещение производственных помещений при возможности предпочтительно устраивать локализованным, чему благоприятствуют большие размеры освещаемых поверхностей или размещение их сосредоточенными группами или рядами.

В непроизводственных помещениях устраивается общее освещение, как правило, равномерное (исключения возможны, в частности, при размещении столов фиксированными рядами, в выставочных помещениях и т.п.).

Дополнительное местное освещение, требуемое нормами для некоторых помещений, при необходимости устраивается на единичных рабочих местах, и это требование не надо понимать как требование устройства комбинированного освещения.

Штепсельные розетки для подключения переносного освещения необходимы во всех помещениях, имеющих механизмы или производственные емкости, и должны обеспечивать пользование ручными светильниками при ограниченной длине провода. В некоторых помещениях непроизводственных зданий (например в коридорах) они используются также для включения пылесосов и электрополотеров.

1.4. Выбор освещенности

Быстрота и четкость различения предметов (объекта) на том или ином фоне зависит от разности яркости объекта (Во) и фона (Вф). Минимальную разность яркости, воспринимаемую глазом, называют пороговой разностью яркости (DВ). Значение DВ зависит от уровня яркости фона. Поэтому порог видимости объекта принято оценивать отношением пороговой разности яркости к яркости фона, которое называют пороговым контрастом:

Его значение уменьшается по мере увеличения яркости фона. При больших размерах рассматриваемого объекта и значениях яркости фона больше 100 нт (1 нт = 1 кд/м2) пороговый контраст практически постоянен и равен своему минимальному значению.

Значение порогового контраста зависит и от углового размера объекта, под которым понимают отношение абсолютного размера объекта к расстоянию его до глаза наблюдателя. С увеличением углового размера значение порогового контраста уменьшается. Значение порогового контраста зависит также от времени, в течение которого глаз фиксирует наблюдаемый объект. Чем меньше время наблюдения, тем больше значение порогового контраста. Критерием оценки уровня видимости является различие между пороговым контрастом (для данного значения яркости фона) и фактическим контрастом объекта с фоном, который устанавливается при заданных условиях. Контраст объекта с фоном равен отношению фактической разности яркостей объекта и фона к яркости фона:

Чем больше контраст объекта с фоном по сравнению с пороговым контрастом, тем лучше виден объект.

Нормы устанавливают наименьшую освещенность; при этом имеется в виду, что они устанавливаются для «наихудших» точек освещаемой поверхности перед очередной очисткой светильников. Произвольное превышение норм недопустимо. При наличии для данного объекта утвержденных отраслевых норм освещенности надлежит пользоваться последними.

Нормы СНиП основаны на шкале освещенности: 0,2 — 0,3 — 0,5 — 1 — 2 — 3 — 5 — 10 — 20 — 30 — 50 — 75 — 100 — 150 — 200 — 300 — 400 — 500 — 600 — 750 — 1000 — 1250 — 1500 — 2000 — 2500 — 3000 — 4000 — 5000 — 6000 — 7500 лк.

Основные нормы для производственных помещений приведены в табл. 1.4.1, для вспомогательных помещений производственных зданий — в табл. 1.4.2.

Фон считается светлым при r > 0,4, средним — при r от 0,2 до 0,4, темным — при r –3

Правила технической эксплуатации электроустановок потребителей

Раздел 2. Электрооборудование и электроустановки общего назначения

Глава 2.12. Электрическое освещение

2.12.1. Требования Правил, изложенные в настоящей главе, распространяются на устройства электрического освещения Потребителей, помещений и сооружений, жилых и общественных зданий, открытых пространств и улиц, а также на рекламное освещение. ¶

2.12.2. Рабочее и аварийное освещение во всех помещениях, на рабочих местах, открытых пространствах и улицах должно обеспечивать освещенность в соответствии с установленными требованиями. ¶

Рекламное освещение, снабженное устройствами программного управления, должно удовлетворять также требованиям действующих норм на допустимые индустриальные радиопомехи. ¶

Применяемые при эксплуатации электроустановок светильники рабочего и аварийного освещения должны быть только заводского изготовления и соответствовать требованиям государственных стандартов и технических условий. ¶

2.12.3. Светильники аварийного освещения должны отличаться от светильников рабочего освещения знаками или окраской. ¶

Светоограждение дымовых труб и других высоких сооружений должно соответствовать установленным правилам. ¶

2.12.4. Питание светильников аварийного и рабочего освещения должно осуществляться от независимых источников. При отключении рабочего освещения переключение на аварийное должно происходить автоматически или вручную, согласно проектным решениям, исходя из целесообразности по местным условиям и в соответствии с требованиями правил устройства электроустановок. ¶

Питание сети аварийного освещения по схемам, отличным от проектных, не допускается. ¶

Присоединение к сети аварийного освещения переносных трансформаторов и других видов нагрузок, не относящихся к этому освещению, не допускается. ¶

Сеть аварийного освещения должна быть выполнена без штепсельных розеток. ¶

2.12.5. На лицевой стороне щитов и сборок сети освещения должны быть надписи (маркировка) с указанием наименования (щита или сборки), номера, соответствующего диспетчерскому наименованию. С внутренней стороны (например, на дверцах) должны быть однолинейная схема, надписи с указанием значения тока плавкой вставки на предохранителях или номинального тока автоматических выключателей и наименование электроприемников* соответственно через них получающих питание. Автоматические выключатели должны обеспечивать селективность отключения потребителей, получающих от них питание. ¶

Использование сетей освещения для подключения каких-либо переносных или передвижных электроприемников не допускается.¶

* Наименование электроприемников (в частности, светильников) должно быть изложено так, чтобы работники, включающие или отключающие единично расположенные или групповые светильники, смогли бы безошибочно производить эти действия

2.12.6. Для питания переносных (ручных) электрических светильников в помещениях с повышенной опасностью и в особо опасных помещениях должно применяться напряжение не выше 50 В, а при работах в особо неблагоприятных условиях и в наружных установках — не выше 12 В. ¶

Вилки приборов на напряжение 12-50 В не должны входить в розетки с более высоким номинальным напряжением. В помещениях, в которых используется напряжение двух и более номиналов, на всех штепсельных розетках должны быть надписи с указанием номинального напряжения. ¶

Использование автотрансформаторов для питания светильников сети 12-50 В не разрешается. ¶

Применение для переносного освещения люминесцентных ламп, не укрепленных на жестких опорах, не допускается. ¶

2.12.7. Установка в светильники сети рабочего и аварийного освещения ламп, мощность или цветность излучения которых не соответствует проектной, а также снятие рассеивателей, экранирующих и защитных решеток светильников не допускается. ¶

2.12.8. Питание сетей внутреннего, наружного, а также охранного освещения Потребителей, сооружений, жилых и общественных зданий, открытых пространств и улиц, как правило, должно быть предусмотрено по отдельным линиям. ¶

Управление сетью наружного освещения, кроме сети освещения удаленных объектов, а также управление сетью охранного освещения должно, как правило, осуществляться централизованно из помещения щита управления энергохозяйством данного Потребителя или иного специального помещения. ¶

2.12.9. Сеть освещения должна получать питание от источников (стабилизаторов или отдельных трансформаторов), обеспечивающих возможность поддержания напряжения в необходимых пределах. ¶

Напряжение на лампах должно быть не выше номинального значения. Понижение напряжения у наиболее удаленных ламп сети внутреннего рабочего освещения, а также прожекторных установок должно быть не более 5% номинального напряжения; у наиболее удаленных ламп сети наружного и аварийного освещения и в сети напряжением 12-50 В — не более 10%. ¶

2.12.10. В коридорах электрических подстанций и распределительных устройств, имеющих два выхода, и в проходных туннелях освещение должно быть выполнено с двусторонним управлением. ¶

2.12.11. У оперативного персонала, обслуживающего сети электрического освещения, должны быть схемы этой сети, запас калиброванных вставок, соответствующих светильников и ламп всех напряжений данной сети освещения. ¶

Оперативный и оперативно-ремонтный персонал Потребителя или объекта даже при наличии аварийного освещения должен быть снабжен переносными электрическими фонарями с автономным питанием. ¶

2.12.12. Очистка светильников, осмотр и ремонт сети электрического освещения должен выполнять по графику (плану ППР) квалифицированный персонал. ¶

Периодичность работ по очистке светильников и проверке технического состояния осветительных установок Потребителя (наличие и целость стекол, решеток и сеток, исправность уплотнений светильников специального назначения и т.п.) должна быть установлена ответственным за электрохозяйство Потребителя с учетом местных условий. На участках, подверженных усиленному загрязнению, очистка светильников должна выполняться по особому графику. ¶

2.12.13. Смена перегоревших ламп может производиться групповым или индивидуальным способом, который устанавливается конкретно для каждого Потребителя в зависимости от доступности ламп и мощности осветительной установки. При групповом способе сроки очередной чистки арматуры должны быть приурочены к срокам групповой замены ламп. ¶

2.12.14. При высоте подвеса светильников до 5 м допускается их обслуживание с приставных лестниц и стремянок. В случае расположения светильников на большей высоте разрешается их обслуживание с мостовых кранов, стационарных мостиков и передвижных устройств при соблюдении мер безопасности, установленных правилами безопасности при эксплуатации электроустановок и местными инструкциями. ¶

2.12.15. Вышедшие из строя люминесцентные лампы, лампы типа ДРЛ и другие источники, содержащие ртуть, должны храниться в специальном помещении. Их необходимо периодически вывозить для уничтожения и дезактивации в отведенные для этого места. ¶

2.12.16. Осмотр и проверка сети освещения должны проводиться в следующие сроки: ¶

  • проверка исправности аварийного освещения при отключении рабочего освещения — 2 раза в год;
  • измерение освещенности внутри помещений (в т.ч. участков, отдельных рабочих мест, проходов и т.д.) — при вводе сети в эксплуатацию в соответствии с нормами освещенности, а также при изменении функционального назначения помещения.

2.12.17. Проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3). ¶

2.12.18. Техническое обслуживание и ремонт установок наружного (уличного) и рекламного освещения должен выполнять подготовленный электротехнический персонал. ¶

Потребители, не имеющие такого персонала, могут передать функции технического обслуживания и ремонта этих установок специализированным организациям. ¶

Периодичность планово-предупредительных ремонтов газосветных установок сети рекламного освещения устанавливается в зависимости от их категории (месторасположения, системы технического обслуживания и т.п.) и утверждается ответственным за электрохозяйство Потребителя. ¶

2.12.19. Включение и отключение установок наружного (уличного) и рекламного освещения, как правило, должно осуществляться автоматически в соответствии с графиком, составленным с учетом времени года, особенностей местных условий и утвержденным местными органами власти. ¶

2.12.20. Обо всех неисправностях в работе установок рекламного освещения и повреждениях (мигание, частичные разряды и т.п.) оперативный или оперативно-ремонтный персонал Потребителя обязан немедленно сообщить об этом своим руководящим работникам и принять меры к их устранению. Работа установок рекламного освещения при видимых повреждениях не допускается. ¶

2.12.21. При централизованной автоматической системе управления установками уличного и рекламного освещения должно обеспечиваться круглосуточное дежурство персонала, имеющего в своем распоряжении транспортные средства и телефонную связь. ¶

Типы ламп для домашнего освещения — какие лучше и в чем разница

Какие лампы лучше для домашнего освещения? Светодиодные, люминесцентные, галогенные или лампы накаливания? В чем преимущества одних и каковы недостатки других? Насколько экономически выгодно использовать лампы того или иного типа? Давайте попробуем разобраться.

Лампы накаливания

Наиболее распространенным типом ламп в домах по прежнему остаются лампы накаливания. Они по сей день выпускаются на различные мощности, бывают самых разных размеров и форм, подходят для установки практически в любой осветительный прибор, будь то светильник, ночник или люстра.

Лампа накаливания — простейший электрический источник света. Она состоит из герметичной прозрачной вакуумированной колбы, металлического цоколя, а внутри колбы установлена спираль — вольфрамовая нить накала.

В процессе работы лампы, по ее вольфрамовой нити протекает электрический ток, как раз и вызывающий нагрев нити накала до бела. То есть свет в такой лампочке получается за счет раскаленной током вольфрамовой нити, которая и испускает видимый свет. При этом на свет приходится лишь 20% всей подводимой к лампочке энергии, остальные 80% приходятся на нагрев. Можно в принципе сказать, что лампа накаливания — это нагревательный прибор, который в процессе работы неплохо светится.

Конечно, лампы накаливания стремительно уходят с рынка, их производство не так интенсивно как раньше, но стоимость ламп накаливания — самая низкая, по сравнению с лампами других типов.

Другие типы ламп более экономичны при эксплуатации чем лампы накаливания, некоторые экономичнее до 10 раз, и даже надежнее в разы, но стоимость ламп накаливания очень низка по сравнению с другими типами. Поэтому те люди, которые не задумываются о долгосрочной окупаемости, продолжают приобретать старые добрые лампы накаливания за копейки, хотя на самом деле несут убытки, переплачивая за электроэнергию, расходуемую на освещение на протяжении многих месяцев.

Галогенные лампы

Усовершенствованный тип лампы накаливания — галогенная лампа. Здесь источником света так же служит раскаленная током вольфрамовая нить, однако помещенная в колбу с парами галогенов. Светоотдача повышается благодаря галогенам, и эффективность немного возрастает в связи с этим.

Увеличивается и срок службы лампы — если обычная лампочка служит примерно 1000 часов, то галогенная — в 2-3 раза дольше. Галогенные лампы меньше по размером при той же мощности но при большей светоотдаче, чем у обычных лампочек с нитью накала. Поэтому галогенные лампы широко используются во встраиваемых домашних светильниках небольшого размера и в автомобильной оптике (смотрите — Виды галогенных ламп и их особенности).

Люминесцентные лампы

Энергосберегающие люминесцентные лампы — следующая ступень на пути эволюции осветительных приборов. Именно компактные люминесцентные лампы (КЛЛ) называют сегодня «энергосберегайками». Их потребление значительно ниже чем у ламп накаливания и галогенных ламп с аналогичной величиной светового потока.

Начиная с 2010-2011 годов, началось активное внедрение люминесцентных ламп в системы домашнего освещения. И если раньше люминесцентные лампы в форме трубок эстетически подходили для производственных помещений и офисов, оснащенных специальными светильниками под такие трубки, то люминесцентные лампы под стандартный цоколь (как у домашней лампы накаливания) стали подходить и для жилых помещений — выкрутил лампу накаливания, поставил в этот же патрон энергосберегающую люминесцентную лампу, и никаких трудностей.

Основа функционирования люминесцентной лампы — электрический разряд в парах ртути. Ультрафиолетовое излучение, которое при этом возникает, преобразуется в видимый свет благодаря люминофору, нанесенному на внутренние стенки колбы. В качестве люминофора применяют специальные составы типа галофосфата кальция в составе смеси со вспомогательными компонентами.

Светоотдача люминесцентных ламп приблизительно в 5 раз выше чем у ламп накаливания, а срок службы качественной люминесцентной лампы измерим тысячами часов. Тем не менее даже люминесцентные лампы не являются на сегодняшний день самыми эффективными источниками света для жилища, не говоря уже о проблеме утилизации неисправных ламп с парами ртути внутри.

Светодиодные лампы

Венец эволюции источников света на сегодняшний день — светодиодные лампы, самые энергоэффективные. Далее мы наглядно сравним характеристики ламп различных типов, и это станет более очевидным. В качестве источников света здесь используются светодиоды, поэтому конструкция светодиодной лампы несколько сложнее чем у лампы накаливания, да и стоимость ее поэтому сильно выше.

Тем не менее светодиодные лампы быстро окупаются во время эксплуатации, причем намного раньше, чем истечет срок их службы, который составляет десятки тысяч часов. При этом светодиодные лампы в высшей степени безопасны. У них нет стеклянной колбы, которая может лопнуть, причинив вред здоровью человека, например порезав его, как и нет паров ртути и никаких других вредных компонентов, то есть экологическая безопасность тоже обеспечена. Проблем с утилизацией, если что, не возникнет вообще.

Сравнение параметров ламп различных типов

Мощность

Из приведенной таблицы видно, что при одном и том же отдаваемом световом потоке, лампы разных типов потребляют разную электрическую мощность, и мощность эта различается в разы. Особенно обратите внимание на то, что светодиодная лампа по сравнению с лампой накаливания потребляет почти в 8 раз меньше электроэнергии, а дает при этом столько же света. Представьте себе, как это отразится на счетах за электроэнергию. Что касается компактной люминесцентной лампы, то она в 1,5 раза уступает светодиодной.

КПД

А нужен ли нам нагрев от лампочки? Конечно нет, ведь для обогрева жилища есть система отопления. Получается, что чем сильнее нагревается лампа — тем больше энергии расходуется не целевым образом, ведь лампа нужна нам для освещения, а не для обогрева. Между тем лампа накаливания 80% потребляемой мощности переводит в тепло. Галогенная греет на 65%. Люминесцентная на 15%. Светодиодная всего на 2%.

Прочность корпуса

Что касается прочности, то лампы накаливания и галогенные лампы имеют колбы из хрупкого тонкого стекла, и стоит такую лампу уронить, как тут же придется заметать мелкие осколки. Люминесцентные лампы не менее хрупки. В них к тому же находятся пары ртути, токсичные пары, которые выйдут наружу если колбу случайно разбить, и потребуется проветривание помещения и санитарная обработка.

Светодиодные лампы находятся в выигрышной позиции, они не боятся ударов, колба, как правило, из поликарбоната, вредных газов здесь нет. Если светодиодную лампу случайно уронить, то ничего ей скорее всего не будет, разве что не стоит ронять ее с большой высоты, дабы не повредить внутренности.

Срок службы

По сроку службы светодиодные лампы однозначно превосходят любые другие: в среднем светодиоды прослужат в 40 раз дольше лампы накаливания, их можно считать в этом плане вечными. Некоторые производители прямо пишут на упаковке, что лампа способна гарантированно проработать 30 или 40 лет. Люминесцентные лампы немного уступают, их производители уверенны что лампа прослужит 10 лет. Что касается лампы накаливания, то средний срок ее для условий нынешних электрических сетей — 1 год.

Простота замены

Чтобы заменить лампочку, достаточно ее выкрутить из патрона и вкрутить новую. Но галогенные лампы нельзя вкручивать как попало. Прежде всего необходимо понимать, что галогенная лампа сильно разогревается в процессе работы, например 40 ваттная лампа разогревается до 250 °C. Нет, мы не говорим сейчас о том, что необходимо дождаться чтобы лампа остыла, прежде чем ее выкручивать, здесь важно другое.

Когда устанавливаете новую галогенную лампу, руки должны быть исключительно чистыми, и лучше вообще пользоваться салфеткой, ведь любое жирное пятно на колбе обязательно сгорит и возникнет горелый след, свет будут испорчен. Еще такой след приведет к локальному перегреву колбы, и она может треснуть. Светодиодные и люминесцентные лампы не греются так сильно, поэтому их можно выкручивать и вкручивать даже голыми руками.

Аспекты безопасности

Говоря о безопасности, рассмотрим пару аспектов. Во-первых качество света. Качество света лучше всего у ламп накаливания, галогенных ламп и светодиодных ламп. Люминесцентные же лампы обладают вредным мерцанием, раздражающим нервную систему, к тому же цветопередача у таких ламп, как правило, искажена. Во-вторых, содержание паров ртути отнюдь не в пользу люминесцентных ламп. То есть по безопасности выигрывают все кроме люминесцентных.

Что в итоге

Итог однозначен. С точки зрения экономичности и безопасности на первом месте светодиодные лампы, затем идут лампы накаливания (безопасны, но прожорливы), и наконец люминесцентные лампы (мерцают, плохо передают цвета, содержат ртуть).

Рассмотрим финансовую сторону

Допустим в квартире установлено 15 ламп накаливания по 75 ватт, которые вы хотите заменить на светодиодные. Пусть в день лампы горят примерно по 4 часа. Значит в месяц на освещение приходится: 15*75*4*30 = 135 кВт-часов. Допустим, стоимость электроэнергии в вашем регионе 5 рублей за 1 кВт-час. Значит в месяц только за свет набегает 675 рублей.

Если перейти на светодиодные лампы мощностью в 7,5 раз меньшей (как отмечалось выше), то счет составит всего 90 рублей. Пусть замена ламп обойдется вам в 3450 рублей, тогда при разнице в счетах в 585 рублей, лампы окупятся за пол года! И это с предполагаемой ценой светодиодной лампы в 230 рублей. Выгода налицо. Если теперь учесть, что светодиодные лампы прослужат 30 лет, то сами понимаете, о какой колоссальной экономии идет речь.

Три главных плюса светодиодных ламп

Светодиодные лампы вечные по сравнению с лампами накаливания, которые быстро перегорают

Светодиодные лампы быстро окупаются несмотря на высокую стоимость.

Светодиодные лампы экологически безопасны и их непросто разбить.

Лучшие для домашнего освещения — светодиодные лампы

В заключении можно однозначно сказать, что для домашнего освещения лучше всего со всех точек зрения подходят светодиодные лампы. Даже если на первый взгляд они кажутся дорогими, прикиньте окупаемость. Чем больше осветительных приборов в вашем доме — тем быстрее окупятся новые лампочки.

Если же оставить все как есть, то получится, что счета за электроэнергию, расходуемую на неэффективное освещение, съедят в общей сложности гораздо больше денег, чем потребуется всего один раз потратить на закупку новых эффективных лампочек.

Какие бывают лампы для освещения: обзор разнообразия типов

Свет – основа жизни. Потому что благодаря ему существует фотосинтез – базовый процесс появления органики. В жизни людей свет также очень важен. Но день сменяется ночью. И чтобы эффективно преодолеть эту закономерность, была изобретена электрическая лампа. Со временем различные виды электрических ламп прочно вошли в нашу жизнь.

  1. Первые электрические лампочки
  2. Люминесцентные лампы
  3. Газоразрядные лампы
  4. Светодиодные лампочки

Первые электрические лампочки

Первые лампы освещения появились в конце девятнадцатого века. Для получения света было использовано сопротивление металла. Эти лампы накаливания, название которых связано с принципом работы, функционируют следующим образом.

В них электрический ток нагревает металл до высокой температуры. По мере увеличения температуры металл сначала приобретает темно-красный цвет, но при ее дальнейшем росте он желтеет, а затем белеет. При этом видимого света становится все больше и больше. Для получения максимально высокой температуры и наибольшего количества света лампы накаливания снабжены колбой, из которой откачан воздух.

Для применения в лампочке наиболее эффективной формой металлического проводника является спираль. Она позволяет уменьшить место, занимаемое проводником. Но чтобы достичь наиболее высокой температуры, необходимы особые свойства металла. Он должен быть максимально тугоплавким. По этой причине спирали ламп накаливания изготавливаются из вольфрама.

Несмотря на то, что уже прошло более ста лет с появления первой электрической лампочки и появились новые разновидности ламп, принцип получения света путем простого нагрева вольфрамовой спирали до сих пор востребован.

Современные лампы, работающие по принципу накаливания спирали, весьма разнообразны по своим размерам и мощности. Их главное преимущество – минимальная себестоимость, основанная на простом устройстве. При включении этих лампочек сразу же достигается максимальная освещенность пространства. Они могут работать в широком диапазоне температур. По этим причинам лампочки накаливания – основные осветительные приборы в системах аварийного освещения. Несмотря на разнообразные формы и размеры, все они устроены одинаково.

Устройство лампы накаливания

Принцип излучения света раскаленной вольфрамовой спиралью усовершенствовался, воплотившись в галогенных лампочках. Если обычная лампочка имеет ограниченный ресурс из-за испарения вольфрама, в галогенных лампочках этот недостаток устранен благодаря использованию галогенных соединений-восстановителей. Они позволили увеличить температуру спирали и, соответственно, яркость лампочки. При этом ресурс ее также вырос.

Но нагрев и связанное с этим тепло, в большом количестве излучаемое раскаленной спиралью, также увеличились. Чтобы получить больший световой поток от лампочки при меньшей температуре и расходе электрической энергии, надо изменить принцип создания света.

Модели галогенных лампочек

Люминесцентные лампы

Свет в виде люминесценции был открыт в конце девятнадцатого века. Тогда обнаружили, что слабый электрический ток в разреженном газе с давлением менее 100 Па вызывает его свечение. Это явление назвали тлеющим разрядом.

Причем состав света для каждого газа получается разный. У паров ртути наблюдалось совсем незначительное свечение. Такой эффект происходит потому, что наибольшую силу излучение имеет в ультрафиолетовом спектре. Энергия его велика и заметно воздействует на различные вещества. Некоторые из них от воздействия ультрафиолета излучают видимый свет. Эти вещества называются люминофорами.

Стало возможным создать новые виды осветительных ламп – люминесцентные лампочки. Их производство началось в 1938 году и существует до нашего времени. Обычные люминесцентные лампы имеют вид длинных стеклянных трубок белого цвета. Они стали частью дизайна потолков многих офисов и промышленных помещений.

Трубчатая колба изнутри покрыта белым порошком люминофора. Чтобы люминесцентная лампочка нормально функционировала, необходимо ограничить ток через нее. С этой целью используется так называемый балласт в виде дросселя или инверторный.

Люминесцентная лампа с тлеющим разрядом

Современные типы ламп чаще снабжаются инверторными балластами. Они существенно улучшают основные характеристики ламп. Вместе с мощными высоковольтными транзисторами появились новые типы ламп освещения – энергосберегающие лампочки. В них трубчатая колба изогнута в компактную конструкцию, уменьшающую максимальные размеры до минимума. Для ознакомления с тем, какие бывают энергосберегающие лампочки на рынке, предложено изображение ниже.

Модели энергосберегающих лампочек

Газоразрядные лампы

Яркость и потребляемая мощность – две важнейшие характеристики ламп освещения. Они определяют поиск технических решений, чтобы создать новые виды ламп освещения с лучшими параметрами. Принцип создания света в люминесцентной лампе требует большой поверхности люминофора для увеличения светового потока. Он достаточен для использования в бытовых и офисных помещениях. Но как мощный компактный источник света не пригоден. По этой причине была изобретена газоразрядная лампа высокого давления.

В ней тлеющий разряд возникает лишь сразу после включения. Затем давление внутри колбы возрастает одновременно с увеличением силы тока в лампе. Возникающая в газе дуга является источником мощного излучения. Это излучение используется по-разному в зависимости от состава газа. Разряд в парах ртути при высоком давлении порядка 100 кПа дает много как видимого света, так и ультрафиолетового излучения.

Но видимый свет имеет оттенок синего цвета. Люди и предметы при таком освещении неприятно выглядят. Для коррекции цветопередачи источник света – горелка из кварцевого стекла – окружается колбой с покрытием люминофором. Получается лампа, которая называется ДРЛ – дуговая ртутная люминесцентная. Эти лампы широко применялись для уличного освещения.

Лампы ДРЛ

Но колба с люминофором увеличивает себестоимость источника света. Преобразование ультрафиолета в видимый свет с применением люминофора имеет тенденции к ухудшению со временем. От осыпавшегося люминофора мутнеет кварцевое стекло. Цветопередача даже с люминофором оставляет желать лучшего. В силу перечисленных причин ДРЛ были вытеснены в уличном освещении натриевыми лампами. Они устроены функционально точно так же. Но вместо паров ртути используются пары натрия.

Колба прозрачна, а горелка изготовлена из специальных материалов, более тугоплавких, чем кварцевое стекло. Свет охватывает желтые цвета спектра, которые лучше всего воспринимает человеческое зрение. Поэтому натриевые лампы выглядят ярче, чем ДРЛ такой же мощности.

Их широко применяют как наиболее современные и выносливые источники света не только для уличного освещения, но и в сельском хозяйстве для теплиц и помещений птицеводческого и животноводческого комплексов. Но главным ограничителем применения натриевых ламп является их неправильная цветопередача из-за узкого спектра излучения.

Натриевая лампа высокого давления

Среди газоразрядных ламп наиболее правильная цветопередача у ртутных ламп сверхвысокого давления и ксеноновых ламп. Лампа ДРШ – дуговая ртутная шаровая – это горелка специальной формы из кварцевого стекла. Форма в виде шара придает колбе наибольшую прочность. Это необходимо из-за давления внутри колбы, которое может быть больше 1 МПа. Из-за большого давления и температуры пары ртути излучают более широкий спектр. Но при этом лампа взрывоопасна, а в ее спектре много ультрафиолета.

Лампа ДРШ

Существенным недостатком ДРЛ, ДРШ и натриевых ламп высокого давления является использование металла для получения паров. По этой причине лампы долго запускаются, а после погасания не могут сразу зажечься из-за большого давления в колбе. Чтобы лампу зажечь, необходим балласт специальной конструкции.

Из газоразрядных ламп, получивших распространение в связи с развитием полупроводниковых приборов, выделяются ксеноновые лампы как источники, наиболее близкие к естественному свету. Они применяются в фотовспышках, автомобильных фарах, проекторах кинотеатров и мощных осветителях. Среди них также есть модели высокого и сверхвысокого давления. Это самые мощные современные источники качественного света.

Мощная ксеноновая лампа сверхвысокого давления Автомобильные ксеноновые лампы

Настоящая революция на рынке светотехники произошла после появления синих и ультрафиолетовых светодиодов. Стало возможным использовать светодиодное освещение и изготавливать лампочки для этих целей. На сегодняшний день они являются наиболее эффективными источниками света для бытовых светильников. Их конструкция основана на использовании отдельных светящихся кристаллов. Причем сам кристалл излучает синий спектр, в том числе ультрафиолет. А видимый белый свет с тем или иным оттенком создает люминофор. Точно так же, как и в люминесцентной лампе.

Светодиодные лампочки

Светодиод всегда излучает свет в одну сторону. Эта особенность определяется его расположением на подложке. Направленность света в светодиодных лампочках зависит от геометрии расположения излучателей света. С учетом этого надо выбирать лампочку для светильника или люстры. Более новыми конструктивными разновидностями являются филаментные лампочки. Они имитируют лампочки накаливания и создают свет, наиболее равномерно направленный во все стороны.

В них применены микросхемы в виде нитей. Нить на самом деле – это узкая сапфировая лента-подложка. На ней сформированы кристаллы и резисторы по аналогии со светодиодной лентой. Эти лампочки идеально подходят для различных светильников с дизайном, адаптированным под лампочки накаливания. Питает светодиодную лампочку электронный балласт, аналогичный тому, который применен в энергосберегающей лампочке.

Модели светодиодных ламп

Чтобы сравнить разные виды лампочек по основным характеристикам, далее приведены таблица и иллюстрация. Они наглядно показывают преимущества светодиодных ламп. Несмотря на более высокую цену, эти источники света окупаются сполна.

Таблица основных характеристик различных видов ламп Самые распространенные типы источников света